This book focuses on smart materials and structures, which are also referred to as intelligent, adaptive, active, sensory, and metamorphic. The ultimate goal is to develop biologically inspired multifunctional materials with the capability to adapt their structural characteristics, monitor their health condition, perform self-diagnosis and self-repair, morph their shape, and undergo significant controlled motion.
This chapter describes recent developments in the area of manmade microflyers. The design space for microflyers is described, along with fundamental physical limits to miniaturizing mechanisms, energy storage, and electronics. Aspects of aerodynamics at the scale of microflyers are discussed. Microflyer concepts developed by a number of researchers are described in detail. Because the focus is on bioinspiration and biomimetics, scaled-down versions of conventional aircraft, such as fixed-wing micro air vehicles and micro-helicopters, are not addressed. Modeling of the aeromechanics of flapping wing microflyers is described with an illustrative example. Finally, some of the sensing mechanisms used by natural flyers are discussed.
This book focuses on smart materials and structures, which are also referred to as intelligent, adaptive, active, sensory, and metamorphic. The ultimate goal is to develop biologically inspired multifunctional materials with the capability to adapt their structural characteristics, monitor their health condition, perform self-diagnosis and self-repair, morph their shape, and undergo significant controlled motion.
This chapter describes recent developments in the area of manmade microflyers. The design space for microflyers is described, along with fundamental physical limits to miniaturizing mechanisms, energy storage, and electronics. Aspects of aerodynamics at the scale of microflyers are discussed. Microflyer concepts developed by a number of researchers are described in detail. Because the focus is on bioinspiration and biomimetics, scaled-down versions of conventional aircraft, such as fixed-wing micro air vehicles and micro-helicopters, are not addressed. Modeling of the aeromechanics of flapping wing microflyers is described with an illustrative example. Finally, some of the sensing mechanisms used by natural flyers are discussed.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.