Per Martin-Löf's work on the development of constructive type theory has been of huge significance in the fields of logic and the foundations of mathematics. It is also of broader philosophical significance, and has important applications in areas such as computing science and linguistics. This volume draws together contributions from researchers whose work builds on the theory developed by Martin-Löf over the last twenty-five years. As well as celebrating the anniversary of the birth of the subject it covers many of the diverse fields which are now influenced by type theory. It is an invaluable record of areas of current activity, but also contains contributions from N. G. de Bruijn and William Tait, both important figures in the early development of the subject. Also published for the first time is one of Per Martin-Löf's earliest papers.
Radiochemistry or nuclear chemistry is the study of radiation from an atomic and molecular perspective, including elemental transformation and reaction effects, as well as physical, health and medical properties. This revised edition of one of the earliest and best-known books on the subject has been updated to bring into teaching the latest developments in research and the current hot topics in the field. To further enhance the functionality of this text, the authors have added numerous teaching aids, examples in MathCAD with variable quantities and options, hotlinks to relevant text sections from the book, and online self-grading tests. - New edition of a well-known, respected text in the specialized field of nuclear/radiochemistry - Includes an interactive website with testing and evaluation modules based on exercises in the book - Suitable for both radiochemistry and nuclear chemistry courses
This book continues from where the authors' previous book, Structural Proof Theory, ended. It presents an extension of the methods of analysis of proofs in pure logic to elementary axiomatic systems and to what is known as philosophical logic. A self-contained brief introduction to the proof theory of pure logic is included that serves both the mathematically and philosophically oriented reader. The method is built up gradually, with examples drawn from theories of order, lattice theory and elementary geometry. The aim is, in each of the examples, to help the reader grasp the combinatorial behaviour of an axiom system, which typically leads to decidability results. The last part presents, as an application and extension of all that precedes it, a proof-theoretical approach to the Kripke semantics of modal and related logics, with a great number of new results, providing essential reading for mathematical and philosophical logicians.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.