One of the most intriguing questions in image processing is the problem of recovering the desired or perfect image from a degraded version. In many instances one has the feeling that the degradations in the image are such that relevant information is close to being recognizable, if only the image could be sharpened just a little. This monograph discusses the two essential steps by which this can be achieved, namely the topics of image identification and restoration. More specifically the goal of image identifi cation is to estimate the properties of the imperfect imaging system (blur) from the observed degraded image, together with some (statistical) char acteristics of the noise and the original (uncorrupted) image. On the basis of these properties the image restoration process computes an estimate of the original image. Although there are many textbooks addressing the image identification and restoration problem in a general image processing setting, there are hardly any texts which give an indepth treatment of the state-of-the-art in this field. This monograph discusses iterative procedures for identifying and restoring images which have been degraded by a linear spatially invari ant blur and additive white observation noise. As opposed to non-iterative methods, iterative schemes are able to solve the image restoration problem when formulated as a constrained and spatially variant optimization prob In this way restoration results can be obtained which outperform the lem. results of conventional restoration filters.
This book presents the most common site-specific pediatric orthopedic problems seen in clinical practice. Detailed discussions of disorders of the chest wall, neck, back, pelvic, upper- and lower limb, leg length discrepancy, abnormal gate, congenital deficiencies, bone and joint infections are included in this comprehensive resource. Operative treatments are discussed throughout the book with the key focus on managing the patient and the use of the conservative approach. As such, the main benefit of this book is as a diagnostic tool to assess children with orthopedic disease. Designed to lead the reader from the initial physical examination through to making the most likely diagnosis, there is advice on what additional studies are meaningful, when there is an indication for referral and what advice can be provided for the patient. The value of the book is increased by hundreds of color images, thus making it easily accessible for pediatric orthopedic surgeons, pediatrician s, pediatric physiotherapists, podiatrists, pediatricians, rehabilitation specialists and primary care physicians with an interest in the subject.
Emulsification of vegetable oil-based resins was a daunting task when the author began his research, but the subsequent technology spawned a generation of stable emulsions for waterborne coatings based on vegetable oil-based alkyd resins, oils and fatty acids. Autoxidative polymerization of emulsified alkyd resins is an innovative and original contribution to emulsion technology, because conventional emulsion-polymerization is not applicable to alkyd resins. Emulsified alkyd particles are polymerized while dispersed in stable aqueous media—an original and patented innovation. Smooth and fa- drying alkyd coatings are generated from non-polymerized emulsions and air-dried with conventional metal driers, and have met with marketing success. The pre-polymerization innovation for emulsified alkyd particles provides very fast air-drying coatings that have potential markets for interior architectural latex coatings and waterborne pressure-sensitive adhesives and inks. The author demonstrates his knowledge of chemical reaction kinetics by employing a combination of oxygen concentration, internal reactor pressure and other reactor variables to finely control the rate and degree of autoxidative polymerization. He meticulously calculates surfactant chemistry by measuring hydrophile-lipophile balance values, and solubility parameters to emulsify characterized resins. The relationship between hydrophi- lipophile values and solubility parameters is shown in explicit equations. Homogenization equipment used during the course of this research to generate emulsions is shown in detailed drawings together with concise particle size and distribution data. The author reports research spawned internationally by his research in the fields of alkyd-acrylic hybrids, polyester and oil-modified urethane resins.
While the field of computer vision drives many of today’s digital technologies and communication networks, the topic of color has emerged only recently in most computer vision applications. One of the most extensive works to date on color in computer vision, this book provides a complete set of tools for working with color in the field of image understanding. Based on the authors’ intense collaboration for more than a decade and drawing on the latest thinking in the field of computer science, the book integrates topics from color science and computer vision, clearly linking theories, techniques, machine learning, and applications. The fundamental basics, sample applications, and downloadable versions of the software and data sets are also included. Clear, thorough, and practical, Color in Computer Vision explains: Computer vision, including color-driven algorithms and quantitative results of various state-of-the-art methods Color science topics such as color systems, color reflection mechanisms, color invariance, and color constancy Digital image processing, including edge detection, feature extraction, image segmentation, and image transformations Signal processing techniques for the development of both image processing and machine learning Robotics and artificial intelligence, including such topics as supervised learning and classifiers for object and scene categorization Researchers and professionals in computer science, computer vision, color science, electrical engineering, and signal processing will learn how to implement color in computer vision applications and gain insight into future developments in this dynamic and expanding field.
The present edition of The Human Central Nervous System differs considerably from its predecessors. In previous editions, the text was essentially confined to a section dealing with the various functional systems of the brain. This section, which has been rewritten and updated, is now preceded by 15 newly written chapters, which introduce the pictorial material of the gross anatomy, the blood vessels and meninges and the microstructure of its various parts and deal with the development, topography and functional anatomy of the spinal cord, the brain stem and the cerebellum, the diencephalon and the telencephalon. Great pains have been taken to cover the most recent concepts and data. As suggested by the front cover, there is a focus on the evolutionary development of the human brain. Throughout the text numerous correlations with neuropathology and clinical n- rology have been made. After much thought, we decided to replace the full Latin terminology, cherished in all previous editions, with English and Anglicized Latin terms. It has been an emotional farewell from beautiful terms such as decussatio hipposideriformis W- nekinkii and pontes grisei caudatolenticulares. Not only the text, but also the p- torial material has been extended and brought into harmony with the present state of knowledge. More than 230 new illustrations have been added and many others have been revised. The number of macroscopical sections through the brain has been extended considerably. Together, these illustrations now comprise a complete and convenient atlas for interpreting neuroimaging studies.
This industrially relevant resource covers all established and emerging analytical methods for the deformulation of polymeric materials, with emphasis on the non-polymeric components. Each technique is evaluated on its technical and industrial merits. Emphasis is on understanding (principles and characteristics) and industrial applicability. Extensively illustrated throughout with over 200 figures, 400 tables, and 3,000 references.
We live in the information society. The main aim of this book is to describe the basic ideas of information theory, answering questions such as how may we transmit and store information as compactly as possible, what is the maximum quantity of information that can be transmitted by a particular channel or network, and how can security be assured? It covers all the basic ideas of information theory and sets them in the context of current applications. These include Shannon's information measure, discrete and continuous information sources and information channels with or without memory, source and channel decoding, rate distortion theory, error correcting codes and the information theoretical approach to cryptology. Throughout the book special attention has been paid to multiterminal or network information theory. This text will be of use to advanced undergraduates and graduate students in electrical engineering and computer science.
This comprehensive reference is clearly destined to become the definitive anatomical basis for all molecular neuroscience research. The three volumes provide a complete overview and comparison of the structural organisation of all vertebrate groups, ranging from amphioxus and lamprey through fishes, amphibians and birds to mammals. This thus allows a systematic treatment of the concepts and methodology found in modern comparative neuroscience. Neuroscientists, comparative morphologists and anatomists will all benefit from: * 1,200 detailed and standardised neuroanatomical drawings * the illustrations were painstakingly hand-drawn by a team of graphic designers, specially commissioned by the authors, over a period of 25 years * functional correlations of vertebrate brains * concepts and methodology of modern comparative neuroscience * five full-colour posters giving an overview of the central nervous system of the vertebrates, ideal for mounting and display This monumental work is, and will remain, unique; the only source of such brilliant illustrations at both the macroscopic and microscopic levels.
This cookbook is full of immediately useable recipes showing you how to develop service and message-oriented (integration) applications on the Oracle Service Bus. In addition to its cookbook style, which ensures the solutions are presented in a clear step-by-step manner, the explanations go into great detail, which makes it good learning material for everyone who has experience in OSB and wants to improve. Most of the recipes are designed in such a way that each recipe is presented as a separate, standalone entity and reading of prior recipes is not required. The finished solution of each recipe is also made available electronically. If you are an intermediate SOA developer who is using Oracle Service Bus to develop service and message-orientated applications on the Oracle Service Bus, then this book is for you. This book assumes that you have a working knowledge of fundamental SOA concepts and Oracle Service Bus.
One of the most intriguing questions in image processing is the problem of recovering the desired or perfect image from a degraded version. In many instances one has the feeling that the degradations in the image are such that relevant information is close to being recognizable, if only the image could be sharpened just a little. This monograph discusses the two essential steps by which this can be achieved, namely the topics of image identification and restoration. More specifically the goal of image identifi cation is to estimate the properties of the imperfect imaging system (blur) from the observed degraded image, together with some (statistical) char acteristics of the noise and the original (uncorrupted) image. On the basis of these properties the image restoration process computes an estimate of the original image. Although there are many textbooks addressing the image identification and restoration problem in a general image processing setting, there are hardly any texts which give an indepth treatment of the state-of-the-art in this field. This monograph discusses iterative procedures for identifying and restoring images which have been degraded by a linear spatially invari ant blur and additive white observation noise. As opposed to non-iterative methods, iterative schemes are able to solve the image restoration problem when formulated as a constrained and spatially variant optimization prob In this way restoration results can be obtained which outperform the lem. results of conventional restoration filters.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.