It is difficult to imagine modem technology without small particles, 1-1000 nm in size, because virtually every industry depends in some way on the use of such materials. Catalysts, printing inks, paper, dyes and pigments, many medicinal products, adsorbents, thickening agents, some adhesives, clays, and hundreds of other diverse products are based on or involve small particles in a very fundamental way. In some cases finely divided materials occur naturally or are merely a convenient form for using a material. In most cases small particles play a special role in technology because in effect they constitute a different state of matter because of the basic fact that the surface of a material is different from the interior by virtue of the unsaturated bonding interactions of the outermost layers of atoms at the surface of a solid. Whereas in a macroscale particle these differences are often insignificant, as the 9 surface area per unit mass becomes larger by a factor of as much as 10 , physical and chemical effects such as adsorption become so pronounced as to make the finely divided form of the bulk material into essentially a different material usually one that has no macroscale counterpart.
This book constitutes the refereed proceedings of the 16th European PVM/MPI Users' Group Meeting on Recent Advances in Parallel Virtual Machine and Message Passing Interface, EuroPVM/MPI 2009, held in Espoo, Finland, September 7-10, 2009. The 27 papers presented were carefully reviewed and selected from 48 submissions. The volume also includes 6 invited talks, one tutorial, 5 poster abstracts and 4 papers from the special session on current trends in numerical simulation for parallel engineering environments. The main topics of the meeting were Message Passing Interface (MPI)performance issues in very large systems, MPI program verification and MPI on multi-core architectures.
This timely book is the first complete descriptive grammar of Lillooet, an indigenous Canadian language spoken in British Columbia, now threatened with extinction. The author discusses three major aspects of the language -- sound system, word structure, and syntax -- in great detail. The classical structuralism method of analysis, as developed in North America by Leonard Bloomfield and his followers, is used to look at every aspect of Lillooet in terms of its function and position within the whole structure of the language. Van Eijk explains terms and procedures in order to make the book accessible not only to the advanced linguist, but also to the undergraduate student with basic linguistic training. Written with great clarity, and well organized, the book is illustrated with copious examples drawn from many years of fieldwork in St'át'imc territory. A fully analysed and translated Lillooet text is included in an appendix to illustrate the grammatical patterns discussed in the main body. A second appendix has a conversion table comparing the standard Amerindian orthography used in the book with the practical orthography used in Lillooet-speaking communities. The Lillooet Language is an invaluable addition to other recent studies of neighbouring Salish languages such as Squamish, Halkomelem, Thompson, and Shuswap. It could be used both as a textbook for studies in the structure of a selected language, and as collateral reading for courses in phonology, morphology and syntax.
On average, 60% of the world's people and cargo is transported by vehicle that move on rubber tires over roadways of various construction, composition, and quality. The number of such vehicles, including automobiles and all manner of trucks, increases continually with a growing positive impact on accessibility and a growing negative impact on interactions among humans and their relationship to the surrounding environment. This multiplicity of vehicles, through their physical impact and their emissions, is responsible for, among other negative results: waste of energy, pollution through emission of harmful compounds, degradation of road surfaces, crowding of roads leading to waste of time and increase of social stress, and decrease in safety and comfort. In particular, the safety of vehicular traffic depends on a man-vehicle-road system that includes both active and passive security controls. In spite of the drawbacks mentioned above, the governments of almost every country in the world not only expect but facilitate improvements in vehicular transport performance in order to increase such parameters as load capacity and driving velocity, while decreasing such parameters as costs to passengers, energy resources investments, fuel consumption, etc. Some of the problems have clear, if not always easily attainable, solutions.
The Dictionary of Hallucinations, second edition, is an alphabetical listing of issues pertaining to hallucinations and other misperceptions. They can be roughly divided into four categories: 1. Definitions of individual hallucinatory symptoms 2. Medical conditions and substances associated with the mediation of hallucinations 3. Historical figures who are known to have experienced hallucinations 4. Miscellaneous issues Each of the definitions of individual hallucinatory symptoms includes: a definition of the term its etymological origin the year of introduction (if known) a reference to the author or authors who introduced the term (if known) a description of the current use a brief explanation of the etiology and pathophysiology of the symptom at hand (if known) references to related terms references to the literature The second edition of A Dictionary of Hallucinations serves as a reference manual for neuroscientists, psychiatrists, psychiatric residents, psychologists, neurologists, historians of psychiatry, general practitioners, and academics dealing professionally with concepts of hallucinations and other sensory deceptions. This new edition provides updated information and references, and includes newly discovered hallucinations, bringing together contributions by other authorities within the field, with all the entries edited by Prof. Blom.
This book develops a general methodological approach to investigate complex physical systems presented by the author in a previous book. The nonlinear dynamics of coupled oscillators is investigated numerically and analytically. Three different mechanical, and one biomechanical, examples are used to demonstrate a general systematical approach to the study of dissipative dynamical systems. Many original examples of special chaotic behavior are discussed and illustrated.
This book presents model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault through the process, test fault detectability and reveal redundancies that can be used to ensure fault tolerance. Case studies demonstrate the methods presented. The second edition includes new material on reconfigurable control, diagnosis of nonlinear systems, and remote diagnosis, plus new examples and updated bibliography.
This volume is a collection of invited talks, oral contributions and poster contributions devoted to advances in gamma-ray spectroscopy of various capture reactions. In agreement with the trend of previous meetings in the series, the symposium paid special attention to theoretical and experimental studies of nuclear structure at low energies and to nuclear astrophysics. Among the other topics covered are: statistical properties of nuclei and other quantum many-body systems, fundamental physics, nuclear data, practical application of capture reactions, and new techniques and facilities for capture gamma-ray spectroscopy. Contents: Nuclear Structure; Nuclear Reactions; Nuclear Astrophysics; Statistical Properties of Nuclei; Experimental Facilities; Nuclear Data; Applications; Fundamental Physics. Readership: Graduate students and researchers in nuclear physics.
This volume introduces a summary of all the techniques used to estimate pH reliably. Emphasis is placed on the techniques that provide the most reliable and detailed data. The role of cell pH is explained with special emphasis on enzymology and membrane transport and bioenergetics. This book was written especially for molecular biologists, biochemists and biophysicists.
Battery Management Systems - Design by Modelling describes the design of Battery Management Systems (BMS) with the aid of simulation methods. The basic tasks of BMS are to ensure optimum use of the energy stored in the battery (pack) that powers a portable device and to prevent damage inflicted on the battery (pack). This becomes increasingly important due to the larger power consumption associated with added features to portable devices on the one hand and the demand for longer run times on the other hand. In addition to explaining the general principles of BMS tasks such as charging algorithms and State-of-Charge (SoC) indication methods, the book also covers real-life examples of BMS functionality of practical portable devices such as shavers and cellular phones. Simulations offer the advantage over measurements that less time is needed to gain knowledge of a battery's behaviour in interaction with other parts in a portable device under a wide variety of conditions. This knowledge can be used to improve the design of a BMS, even before a prototype of the portable device has been built. The battery is the central part of a BMS and good simulation models that can be used to improve the BMS design were previously unavailable. Therefore, a large part of the book is devoted to the construction of simulation models for rechargeable batteries. With the aid of several illustrations it is shown that design improvements can indeed be realized with the presented battery models. Examples include an improved charging algorithm that was elaborated in simulations and verified in practice and a new SoC indication system that was developed showing promising results. The contents of Battery Management Systems - Design by Modelling is based on years of research performed at the Philips Research Laboratories. The combination of basic and detailed descriptions of battery behaviour both in chemical and electrical terms makes this book truly multidisciplinary. It can therefore be read both by people with an (electro)chemical and an electrical engineering background.
This book offers an introduction to the key ideas, basic analysis, and efficient implementation of discontinuous Galerkin finite element methods (DG-FEM) for the solution of partial differential equations. It covers all key theoretical results, including an overview of relevant results from approximation theory, convergence theory for numerical PDE’s, and orthogonal polynomials. Through embedded Matlab codes, coverage discusses and implements the algorithms for a number of classic systems of PDE’s: Maxwell’s equations, Euler equations, incompressible Navier-Stokes equations, and Poisson- and Helmholtz equations.
Hyperbolic Dynamics and Brownian Motion illustrates the interplay between distinct domains of mathematics. There is no assumption that the reader is a specialist in any of these domains: only basic knowledge of linear algebra, calculus and probability theory is required. The content can be summarized in three ways: Firstly, this book provides an introduction to hyperbolic geometry, based on the Lorentz group. The Lorentz group plays, in relativistic space-time, a role analogue to the rotations in Euclidean space. The hyperbolic geometry is the geometry of the unit pseudo-sphere. The boundary of the hyperbolic space is defined as the set of light rays. Special attention is given to the geodesic and horocyclic flows. Hyperbolic geometry is presented via special relativity to benefit from the physical intuition. Secondly, this book introduces basic notions of stochastic analysis: the Wiener process, Itô's stochastic integral, and calculus. This introduction allows study in linear stochastic differential equations on groups of matrices. In this way the spherical and hyperbolic Brownian motions, diffusions on the stable leaves, and the relativistic diffusion are constructed. Thirdly, quotients of the hyperbolic space under a discrete group of isometries are introduced. In this framework some elements of hyperbolic dynamics are presented, as the ergodicity of the geodesic and horocyclic flows. This book culminates with an analysis of the chaotic behaviour of the geodesic flow, performed using stochastic analysis methods. This main result is known as Sinai's central limit theorem.
This graduate textbook provides an introduction to quantum gravity, when spacetime is two-dimensional. The quantization of gravity is the main missing piece of theoretical physics, but in two dimensions it can be done explicitly with elementary mathematical tools, but it still has most of the conceptional riddles present in higher dimensional (not yet known) quantum gravity. It provides an introduction to a very interdisciplinary field, uniting physics (quantum geometry) and mathematics (combinatorics) in a non-technical way, requiring no prior knowledge of quantum field theory or general relativity. Using the path integral, the chapters provide self-contained descriptions of random walks, random trees and random surfaces as statistical systems where the free relativistic particle, the relativistic bosonic string and two-dimensional quantum gravity are obtained as scaling limits at phase transition points of these statistical systems. The geometric nature of the theories allows one to perform the path integral by counting geometries. In this way the quantization of geometry becomes closely linked to the mathematical fields of combinatorics and probability theory. By counting the geometries, it is shown that the two-dimensional quantum world is fractal at all scales unless one imposes restrictions on the geometries. It is also discussed in simple terms how quantum geometry and quantum matter can interact strongly and change the properties both of the geometries and of the matter systems. It requires only basic undergraduate knowledge of classical mechanics, statistical mechanics and quantum mechanics, as well as some basic knowledge of mathematics at undergraduate level. It will be an ideal textbook for graduate students in theoretical and statistical physics and mathematics studying quantum gravity and quantum geometry. Key features: Presents the first elementary introduction to quantum geometry Explores how to understand quantum geometry without prior knowledge beyond bachelor level physics and mathematics. Contains exercises, problems and solutions to supplement and enhance learning
Understanding and employing cryptography has become central for securing virtually any digital application, whether user app, cloud service, or even medical implant. Heavily revised and updated, the long-awaited second edition of Understanding Cryptography follows the unique approach of making modern cryptography accessible to a broad audience, requiring only a minimum of prior knowledge. After introducing basic cryptography concepts, this seminal textbook covers nearly all symmetric, asymmetric, and post-quantum cryptographic algorithms currently in use in applications—ranging from cloud computing and smart phones all the way to industrial systems, block chains, and cryptocurrencies. Topics and features: Opens with a foreword by cryptography pioneer and Turing Award winner, Ron Rivest Helps develop a comprehensive understanding of modern applied cryptography Provides a thorough introduction to post-quantum cryptography consisting of the three standardized cipher families Includes for every chapter a comprehensive problem set, extensive examples, and a further-reading discussion Communicates, using a unique pedagogical approach, the essentials about foundations and use in practice, while keeping mathematics to a minimum Supplies up-to-date security parameters for all cryptographic algorithms Incorporates chapter reviews and discussion on such topics as historical and societal context This must-have book is indispensable as a textbook for graduate and advanced undergraduate courses, as well as for self-study by designers and engineers. The authors have more than 20 years’ experience teaching cryptography at various universities in the US and Europe. In addition to being renowned scientists, they have extensive experience with applying cryptography in industry, from whichthey have drawn important lessons for their teaching.
The process of froth flotation is an outstanding example of applied surface chemistry. It is extensively used in the mining, mineral, metallurgical, and chemical industries for separation and selective concentration of individual minerals and other solids. Substances so concentrated serve as raw materials for producing appropriate metals and chemicals. The importance of flotation in technology is chiefly due to the ease with which it can be made selective and versatile and to the economy of the process. The objective of this book is to review the fundamentals of surface chemistry together with the relevant aspects of organic and inorganic chemistry that-in the opinion of the author-are important ~ control of the froth flotation process. The review updates the information that had been available in books by Sutherland and Wark (1955), Gaudin (1957), Klassen and Mokrousov (1963), and GIembotsky et al. (1963). It emphasizes mainly the surface chemical aspects of the process, leaving other relevant topics such as hydrodynamics, mechanical and electrical technology, cir cuit design and engineering, operations research, instrumentation tech nology, modeling, etc., to appropriate specialized treatments.
There has been revived interest in recent years in the study of special functions. Many of the latest advances in the field were inspired by the works of R. A. Askey and colleagues on basic hypergeometric series and I. G. Macdonald on orthogonal polynomials related to root systems. Significant progress was made by the use of algebraic techniques involving quantum groups, Hecke algebras, and combinatorial methods. The CRM organized a workshop for key researchers in the field to present an overview of current trends. This volume consists of the contributions to that workshop. Topics include basic hypergeometric functions, algebraic and representation-theoretic methods, combinatorics of symmetric functions, root systems, and the connections with integrable systems.
Introduction to Aircraft Aeroelasticity and Loads, SecondEdition is an updated new edition offering comprehensivecoverage of the main principles of aircraft aeroelasticity andloads. For ease of reference, the book is divided into three partsand begins by reviewing the underlying disciplines of vibrations,aerodynamics, loads and control, and then goes on to describesimplified models to illustrate aeroelastic behaviour and aircraftresponse and loads for the flexible aircraft before introducingsome more advanced methodologies. Finally, it explains howindustrial certification requirements for aeroelasticity and loadsmay be met and relates these to the earlier theoretical approachesused. Key features of this new edition include: Uses a unified simple aeroelastic model throughout thebook Major revisions to chapters on aeroelasticity Updates and reorganisation of chapters involving FiniteElements Some reorganisation of loads material Updates on certification requirements Accompanied by a website containing a solutions manual, andMATLAB® and SIMULINK® programs that relate to the modelsused For instructors who recommend this textbook, a series oflecture slides are also available Introduction to Aircraft Aeroelasticity and Loads, SecondEdition is a must-have reference for researchers andpractitioners working in the aeroelasticity and loads fields, andis also an excellent textbook for senior undergraduate and graduatestudents in aerospace engineering.
This book provides a concise description of the current status of a fascinating scientific problem — the inverse variational problem in classical mechanics. The essence of this problem is as follows: one is given a set of equations of motion describing a certain classical mechanical system, and the question to be answered is: Do these equations of motion correspond to some Lagrange function as its Euler-Lagrange equations? In general, not for every system of equations of motion does a Lagrange function exist; it can, however, happen that one may modify the given equations of motion in such a way that they yield the same set of solutions as the original ones and they correspond already to a Lagrange function. Moreover, there can even be infinitely many such Lagrange functions, the relations among which are not trivial. The book deals with this scope of problems. No advanced mathematical methods, such as, contemporary differential geometry, are used. The intention is to meet the standard educational level of a broad group of physicists and mathematicians. The book is well suited for use as lecture notes in a university course for physicists.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.