Categories for Quantum Theory: An Introduction lays foundations for an approach to quantum theory that uses category theory, a branch of pure mathematics. Prior knowledge of quantum information theory or category theory helps, but is not assumed, and basic linear algebra and group theory suffices.
Features lists that cover a broad range of subjects including bizarre births, weird jobs, crazy diets, strange phobias, historical oddities, religious scandals, ridiculous criminal acts, and weird superstitions.
Weird Stuff is an occult conspiracy digest of pop culture, politics, and new technologies in an easy-to-read fully illustrated tabloid magazine format. There has never been a book like it! Explore "High Profile Rituals" on prime-time television. Understand how your children are being programmed to kill with "Princess/Warrior" propaganda. Discover the truth about science fiction and technologies used to control your mind. Weird Stuff goes where only the few dare tread! Where else will you find Aleister Crowley, Walt Disney, Lady Gaga, the Queen, and Barack Obama all in one conspiracy theory?
Monoidal category theory serves as a powerful framework for describing logical aspects of quantum theory, giving an abstract language for parallel and sequential composition, and a conceptual way to understand many high-level quantum phenomena. This text lays the foundation for this categorical quantum mechanics, with an emphasis on the graphical calculus which makes computation intuitive. Biproducts and dual objects are introduced and used to model superposition and entanglement, with quantum teleportation studied abstractly using these structures. Monoids, Frobenius structures and Hopf algebras are described, and it is shown how they can be used to model classical information and complementary observables. The CP construction, a categorical tool to describe probabilistic quantum systems, is also investigated. The last chapter introduces higher categories, surface diagrams and 2-Hilbert spaces, and shows how the language of duality in monoidal 2-categories can be used to reason about quantum protocols, including quantum teleportation and dense coding. Prior knowledge of linear algebra, quantum information or category theory would give an ideal background for studying this text, but it is not assumed, with essential background material given in a self-contained introductory chapter. Throughout the text links with many other areas are highlighted, such as representation theory, topology, quantum algebra, knot theory, and probability theory, and nonstandard models are presented, such as sets and relations. All results are stated rigorously, and full proofs are given as far as possible, making this book an invaluable reference for modern techniques in quantum logic, with much of the material not available in any other textbook.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.