Mechanical engineering, an engineering discipline born of the needs of the Industrial Revolution, is once again asked to do its substantial share in the call for industrial renewal. The general call is urgent as we face the profound issues of productivity and competitiveness that require engineering solutions, among others. The Mechanical Engineering Series is a new series, featuring graduate texts and research monographs, intended to address the need for information in contemporary areas of mechanical engineering. The series is conceived as a comprehensive one that will cover a broad range of concentrations important to mechanical engineering graduate education and research. We are fortunate to have a distinguished roster of consulting editors, each an expert in one of the areas of concentration. The names of the consult ing editors are listed on page vi. The areas of concentration are applied mechanics, biomechanics, computational mechanics, dynamic systems and control, energetics, mechanics of materials, processing, thermal science, and tribology. We are pleased to present Nonlinear Analysis of Thin-Walled Structures by James F. Doyle. Austin, Texas Frederick F. Ling Preface This book is concerned with the challenging subject of the nonlinear static, dynamic, and stability analyses of thin-walled structures. It carries on from where Static and Dynamic Analysis of Structures, published by Kluwer 1991, left off; that book concentrated on frames and linear analysis, while the present book is focused on plated structures, nonlinear analysis, and a greater emphasis on stability analysis.
All structures suffer from stresses and strains caused by factors such as wind loading and vibrations. Stress analysis and measurement is an integral part of the design and management of structures, and is used in a wide range of engineering areas. There are two main types of stress analyses – the first is conceptual where the structure does not yet exist and the analyst has more freedom to define geometry, materials, loads etc – generally such analysis is undertaken using numerical methods such as the finite element method. The second is where the structure (or a prototype) exists, and so some parameters are known. Others though, such as wind loading or environmental conditions will not be completely known and yet may profoundly affect the structure. These problems are generally handled by an ad hoc combination of experimental and analytical methods. This book therefore tackles one of the most common challenges facing engineers – how to solve a stress analysis problem when all of the required information is not available. Its central concern is to establish formal methods for including measurements as part of the complete analysis of such problems by presenting a new approach to the processing of experimental data and thus to experimentation itself. In addition, engineers using finite element methods will be able to extend the range of problems they can solve (and thereby the range of applications they can address) using the methods developed here. Modern Experimental Stress Analysis: Presents a comprehensive and modern reformulation of the approach to processing experimental data Offers a large collection of problems ranging from static to dynamic, linear to non-linear Covers stress analysis with the finite element method Includes a wealth of documented experimental examples Provides new ideas for researchers in computational mechanics
Nonlinear Structural Dynamics Using FE Methods emphasises fundamental mechanics principles and outlines a modern approach to understanding structural dynamics. This will be useful to practising engineers but also students who will find advanced topics presented in an accessible manner. The book successfully presents the fundamentals of structural dynamics and infuses them with finite element (FE) methods. First, the author establishes and develops mechanics principles that are basic enough to form the foundations of FE methods. Second, the book presents specific computer procedures to implement FE methods so that general problems can be 'solved' - that is, responses can be produced given the loads, initial conditions and so on. Finally, the book introduces methods of analyses to leverage and expand the FE solutions.
This book introduces spectral analysis as a means of investigating wave propagation and transient oscillations in structures. After developing the foundations of spectral analysis and the fast Fourier transform algorithm, the book provides a thorough treatment of waves in rods, beams, and plates, and introduces a novel matrix method for analysing complex structures as a collection of waveguides. The presentation includes an introduction to higher-order structural theories, the results of many experimental studies, practical applications, and source-code listings for many programs. An extensive bibliography provides an entry to the research literature. Intended as a textbook for graduate students of aerospace or mechanical engineering, the book will also be of interest to practising engineers in these and related disciplines.
This book concerns the elastic stability of thin-walled structures — one of the most challenging problems facing structural engineers because of its high degree of nonlinearity — and introduces the innovative approach of using spectral analysis of the shapes and the stiffness to gain insights into the nonlinear deformations. The methodology greatly facilitates correlating the shape changes with the stiffness changes. Professor Doyle also develops specific computer procedures that complement finite element methods so that the ideas and methods are applicable to general structural problems. Basic validity of the procedures is established using key archetypal problems from buckling/post-buckling of columns, arches, curved plates, and cylindrical shells, all worked out in significant detail. The book is ideal for a wide variety of structural engineers, particularly those in aerospace and civil fields. Researchers in computational mechanics also find a rich source of new ideas for post-processing data from nonlinear analyses.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.