The definitive work on Dissolved Air Flotation Systems (DAF) for clarification of drinking water Dissolved Air Flotation for Water Clarification is a complete design and application source for the water industry divided into three parts: The first develops a fundamental basis for understanding how the process works, and might be adapted to work better. The second provides a reference for design engineers, water operators, and water managers regarding applications where DAF might be incorporated in an overall treatment scheme. The third develops the necessary DAF design concepts and to illustrate them by description of practical applications. Using DAF to remove particles is not only an important process for conventional drinking water plants, but may also be used as a pre-treatment process in membrane plants including reverse osmosis for water desalinization, and in water reuse applications. Dissolved Air Flotation for Water Clarification offers: Information on new applications of DAF in advanced water treatment, desalinization, water reuse, and industrial treatment in food, waste, and pulp and paper Detailed examples, including the world’s largest new DAF plant ever built – Croton, NY water treatment plant A single volume entirely devoted to DAF for drinking water clarification Coverage of conventional and pre-treatment processes SI and conventional units throughout
Aquatic Chemistry Concepts, Second Edition, is a fully revised and updated textbook that fills the need for a comprehensive treatment of aquatic chemistry and covers the many complicated equations and principles of aquatic chemistry. It presents the established science of equilibrium water chemistry using the uniquely recognizable, step-by-step Pankow format, which allows a broad and deep understanding of aquatic chemistry. The text is appropriate for a wide audience, including undergraduate and graduate students, industry professionals, consultants, and regulators. Every professional using water chemistry will want this text within close reach, and students and professionals alike will expect to find at least one copy on their library shelves. Key Features Extremely thorough, one-of-a-kind treatment of aquatic chemistry which considers: a) chemical thermodynamics fundamentals; b) acid/base, titration, and buffer calculations; c) CO2 chemistry and alkalinity; d) complexation of metal ions by ligands and chelates; e) mineral solubility processes; f) redox chemistry, including the chemistry of chlorine (as in disinfection), oxygen, CO2 and methane, nitrogen, sulfur, iron, and lead, including the story of lead in the drinking water of Flint, Michigan; and g) electrical effects in aqueous solutions including the Debye-Hückel Law (and related equations for activity corrections), double layers, and colloid stability Discussions of how to carry out complex calculations regarding the chemistry of lakes, rivers, groundwater, and seawater Numerous example problems worked in complete detail Special foreword by Jerry L. Schnoor 'There’s a lot to like about a book on water chemistry that lays it out simply. Einstein said that everything should be as simple as it can be, but not simpler. Wise advice. And that is what James F. Pankow has accomplished in the second edition of his textbook, Aquatic Chemistry Concepts. It covers the “waterfront” of essential inorganic chemistry topics, and it supplies enough examples to lead the student toward problem solving.' -From the Foreword, Jerry L. Schnoor
Covers corrective and preventive maintenance programs, manual and computerized information systems, organizational models, planning and management techniques, budgeting, inventory, safety, and training.
Fjords are both an interface and a buffer between glaciated continents and the oceans. They exhibit a very wide range in environmental conditions, both in dynamics and geography. Some are truly wonders of the world with their dizzying mountain slopes rising sharply from the ocean edge. Others represent some of the harshest conditions on earth, with hurricane winds, extremes in temperature, and catastrophic earth and ice movements. Fjords are unique estuaries and represent a large portion of the earth's coastal zone. Yet they are not very well known, given the increasing population and food pressures, and their present industrial and strategic importance. Temperate zone estuaries have had many more years of intense study, with multiyear data available. Most fjords have not been impacted by man but, if history repeats itself, that condition will not last long. Fjords present some unique environmental problems, such as their usually slow flushing time, a feature common to many silled environments. Thus there is presently a need for management guidelines, which can only be based on a thorough knowledge of the way fjords work. Fjords are, in many respects, perfect natural oceanographic and geologic lab oratories. Source inputs are easily identified and their resulting gradients are well developed. Throughout this book, we emphasize the potential of modeling pro cesses in fjords, with comparisons to other estuary, lake, shelf and slope, and open ocean environments.
A Problem-Solving Approach to Aquatic Chemistry Enables civil and environmental engineers to understand the theory and application of aquatic equilibrium chemistry The second edition of A Problem-Solving Approach to Aquatic Chemistry provides a detailed introduction to aquatic equilibrium chemistry, calculation methods for systems at equilibrium, applications of aquatic chemistry, and chemical kinetics. The text directly addresses two required ABET program outcomes in environmental engineering: “... chemistry (including stoichiometry, equilibrium, and kinetics)” and “material and energy balances, fate and transport of substances in and between air, water, and soil phases.” The book is very student-centered, with each chapter beginning with an introduction and ending with a summary that reviews the chapter’s main points. To aid in reader comprehension, important terms are defined in context and key ideas are summarized. Many thought-provoking discussion questions, worked examples, and end of chapter problems are also included. Each part of the text begins with a case study, a portion of which is addressed in each subsequent chapter, illustrating the principles of that chapter. In addition, each chapter has an Historical Note exploring connections with the people and cultures connected to topics in the text. A Problem-Solving Approach to Aquatic Chemistry includes: Fundamental concepts, such as concentration units, thermodynamic basis of equilibrium, and manipulating equilibria Solutions of chemical equilibrium problems, including setting up the problems and algebraic, graphical, and computer solution techniques Acid–base equilibria, including the concepts of acids and bases, titrations, and alkalinity and acidity Complexation, including metals, ligands, equilibrium calculations with complexes, and applications of complexation chemistry Oxidation-reduction equilibria, including equilibrium calculations, graphical approaches, and applications Gas–liquid and solid–liquid equilibrium, with expanded coverage of the effects of global climate change Other topics, including chemical kinetics of aquatic systems, surface chemistry, and integrative case studies For advanced/senior undergraduates and first-year graduate students in environmental engineering courses, A Problem-Solving Approach to Aquatic Chemistry serves as an invaluable learning resource on the topic, with a variety of helpful learning elements included throughout to ensure information retention and the ability to apply covered concepts in practical settings.
The definitive water quality and treatment resource--fully revised and updated Comprehensive, current, and written by leading experts, Water Quality & Treatment: A Handbook on Drinking Water, Sixth Edition covers state-of-the-art technologies and methods for water treatment and quality control. Significant revisions and new material in this edition reflect the latest advances and critical topics in water supply and treatment. Presented by the American Water Works Association, this is the leading source of authoritative information on drinking water quality and treatment. NEW CHAPTERS ON: Chemical principles, source water composition, and watershed protection Natural treatment systems Water reuse for drinking water augmentation Ultraviolet light processes Formation and control of disinfection by-products DETAILED COVERAGE OF: Drinking water standards, regulations, goals, and health effects Hydraulic characteristics of water treatment reactors Gas-liquid processes and chemical oxidation Coagulation, flocculation, sedimentation, and flotation Granular media and membrane filtration Ion exchange and adsorption of inorganic contaminants Precipitation, coprecipitation, and precipitative softening Adsorption of organic compounds by activated carbon Chemical disinfection Internal corrosion and deposition control Microbiological quality control in distribution systems Water treatment plant residuals management
The definitive water quality and treatment resource--fully revised and updated Comprehensive, current, and written by leading experts, Water Quality & Treatment: A Handbook on Drinking Water, Sixth Edition covers state-of-the-art technologies and methods for water treatment and quality control. Significant revisions and new material in this edition reflect the latest advances and critical topics in water supply and treatment. Presented by the American Water Works Association, this is the leading source of authoritative information on drinking water quality and treatment. NEW CHAPTERS ON: Chemical principles, source water composition, and watershed protection Natural treatment systems Water reuse for drinking water augmentation Ultraviolet light processes Formation and control of disinfection by-products DETAILED COVERAGE OF: Drinking water standards, regulations, goals, and health effects Hydraulic characteristics of water treatment reactors Gas-liquid processes and chemical oxidation Coagulation, flocculation, sedimentation, and flotation Granular media and membrane filtration Ion exchange and adsorption of inorganic contaminants Precipitation, coprecipitation, and precipitative softening Adsorption of organic compounds by activated carbon Chemical disinfection Internal corrosion and deposition control Microbiological quality control in distribution systems Water treatment plant residuals management
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.