This book reviews the fundamentals of screw theory concerned with velocity analysis of rigid-bodies, confirmed with detailed and explicit proofs. The author additionally investigates acceleration, jerk, and hyper-jerk analyses of rigid-bodies following the trend of the velocity analysis. With the material provided in this book, readers can extend the theory of screws into the kinematics of optional order of rigid-bodies. Illustrative examples and exercises to reinforce learning are provided. Of particular note, the kinematics of emblematic parallel manipulators, such as the Delta robot as well as the original Gough and Stewart platforms are revisited applying, in addition to the theory of screws, new methods devoted to simplify the corresponding forward-displacement analysis, a challenging task for most parallel manipulators.
Theory of mechanisms is an applied science of mechanics that studies the relationship between geometry, mobility, topology, and relative motion between rigid bodies connected by geometric forms. Recently, knowledge in kinematics and mechanisms has considerably increased, causing a renovation in the methods of kinematic analysis. With the progress of the algebras of kinematics and the mathematical methods used in the optimal solution of polynomial equations, it has become possible to formulate and elegantly solve problems. Mechanisms: Kinematic Analysis and Applications in Robotics provides an updated approach to kinematic analysis methods and a review of the mobility criteria most used in planar and spatial mechanisms. Applications in the kinematic analysis of robot manipulators complement the material presented in the book, growing in importance when one recognizes that kinematics is a basic area in the control and modeling of robot manipulators. - Presents an organized review of general mathematical methods and classical concepts of the theory of mechanisms - Introduces methods approaching time derivatives of arbitrary vectors employing general approaches based on the vector angular velocity concept introduced by Kane and Levinson - Proposes a strategic approach not only in acceleration analysis but also to jerk analysis in an easy to understand and systematic way - Explains kinematic analysis of serial and parallel manipulators by means of the theory of screws
Theory of mechanisms is an applied science of mechanics that studies the relationship between geometry, mobility, topology, and relative motion between rigid bodies connected by geometric forms. Recently, knowledge in kinematics and mechanisms has considerably increased, causing a renovation in the methods of kinematic analysis. With the progress of the algebras of kinematics and the mathematical methods used in the optimal solution of polynomial equations, it has become possible to formulate and elegantly solve problems. Mechanisms: Kinematic Analysis and Applications in Robotics provides an updated approach to kinematic analysis methods and a review of the mobility criteria most used in planar and spatial mechanisms. Applications in the kinematic analysis of robot manipulators complement the material presented in the book, growing in importance when one recognizes that kinematics is a basic area in the control and modeling of robot manipulators. - Presents an organized review of general mathematical methods and classical concepts of the theory of mechanisms - Introduces methods approaching time derivatives of arbitrary vectors employing general approaches based on the vector angular velocity concept introduced by Kane and Levinson - Proposes a strategic approach not only in acceleration analysis but also to jerk analysis in an easy to understand and systematic way - Explains kinematic analysis of serial and parallel manipulators by means of the theory of screws
This book reviews the fundamentals of screw theory concerned with velocity analysis of rigid-bodies, confirmed with detailed and explicit proofs. The author additionally investigates acceleration, jerk, and hyper-jerk analyses of rigid-bodies following the trend of the velocity analysis. With the material provided in this book, readers can extend the theory of screws into the kinematics of optional order of rigid-bodies. Illustrative examples and exercises to reinforce learning are provided. Of particular note, the kinematics of emblematic parallel manipulators, such as the Delta robot as well as the original Gough and Stewart platforms are revisited applying, in addition to the theory of screws, new methods devoted to simplify the corresponding forward-displacement analysis, a challenging task for most parallel manipulators.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.