Circuit simulation has been a topic of great interest to the integrated circuit design community for many years. It is a difficult, and interesting, problem be cause circuit simulators are very heavily used, consuming thousands of computer hours every year, and therefore the algorithms must be very efficient. In addi tion, circuit simulators are heavily relied upon, with millions of dollars being gambled on their accuracy, and therefore the algorithms must be very robust. At the University of California, Berkeley, a great deal of research has been devoted to the study of both the numerical properties and the efficient imple mentation of circuit simulation algorithms. Research efforts have led to several programs, starting with CANCER in the 1960's and the enormously successful SPICE program in the early 1970's, to MOTIS-C, SPLICE, and RELAX in the late 1970's, and finally to SPLICE2 and RELAX2 in the 1980's. Our primary goal in writing this book was to present some of the results of our current research on the application of relaxation algorithms to circuit simu lation. As we began, we realized that a large body of mathematical and exper imental results had been amassed over the past twenty years by graduate students, professors, and industry researchers working on circuit simulation. It became a secondary goal to try to find an organization of this mass of material that was mathematically rigorous, had practical relevance, and still retained the natural intuitive simplicity of the circuit simulation subject.
The motivation for starting the work described in this book was the interest that Hewlett-Packard's microwave circuit designers had in simulation techniques that could tackle the problem of finding steady state solutions for nonlinear circuits, particularly circuits containing distributed elements such as transmission lines. Examining the problem of computing steady-state solutions in this context has led to a collection of novel numerical algorithms which we have gathered, along with some background material, into this book. Although we wished to appeal to as broad an audience as possible, to treat the subject in depth required maintaining a narrow focus. Our compromise was to assume that the reader is familiar with basic numerical methods, such as might be found in [dahlquist74] or [vlach83], but not assume any specialized knowledge of methods for steady-state problems. Although we focus on algorithms for computing steady-state solutions of analog and microwave circuits, the methods herein are general in nature and may find use in other disciplines. A number of new algorithms are presented, the contributions primarily centering around new approaches to harmonic balance and mixed frequency-time methods. These methods are described, along with appropriate background material, in what we hope is a reasonably satisfying blend of theory, practice, and results. The theory is given so that the algorithms can be fully understood and their correctness established.
In the past few years we have written and edited several books in the area of acousticandspeechsignalprocessing. Thereasonbehindthisendeavoristhat there were almost no books available in the literature when we ?rst started while there was (and still is) a real need to publish manuscripts summarizing the most useful ideas, concepts, results, and state-of-the-art algorithms in this important area of research. According to all the feedback we have received so far, we can say that we were right in doing this. Recently, several other researchers have followed us in this journey and have published interesting books with their own visions and perspectives. The idea of writing a book on Microphone Array Signal Processing comes from discussions we have had with many colleagues and friends. As a c- sequence of these discussions, we came up with the conclusion that, again, there is an urgent need for a monograph that carefully explains the theory and implementation of microphone arrays. While there are many manuscripts on antenna arrays from a narrowband perspective (narrowband signals and narrowband processing), the literature is quite scarce when it comes to s- sor arrays explained from a truly broadband perspective. Many algorithms for speech applications were simply borrowed from narrowband antenna - rays. However, a direct application of narrowband ideas to broadband speech processing may not be necessarily appropriate and can lead to many m- understandings.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.