This Concise Encyclopedia draws its material from the award-winning Encyclopedia of Materials: Science and Technology, and includes updates and revisions not available in the original set. This customized collection of articles provides a handy reference for materials scientists and engineers with an interest in the structure of metals, polymers, ceramics and glasses, biomaterials, wood, paper, and liquid crystals.Materials science and engineering is concerned with the relationship between the properties and structure of materials. In this context "structure" may be defined on the atomic scale in the case of crystalline materials, on the molecular scale (in the case of polymers, for example), or on the microscopic scale. Each of these definitions has been applied in making the present selection of articles.* Brings together articles from the Encyclopedia of Materials: Science & Technology that focus on the structure of materials at the atomic, molecular and microscopic levels, plus recent updates* Every article has been commissioned and written by an internationally recognized expert and provides a concise overview of a particular aspect of the field * Extensive bibliographies, cross-referencing and indexes guide the user to the most relevant reading in the primary literature
This book was first published in 1980. A great number of metallic materials in practical use owe their strength to the presence in their microstructure of particles of a hard precipitated phase. The text emphasises the importance of scientific rather than empirical methods in attempting to develop particle-hardened alloys. The author progresses from an elementary knowledge of metallurgy to theories relating to the deformation and fracture of alloys of this type. He also discusses the use of such theories to describe observations on both model materials and practical metals. After a discussion of the microstructures of these alloys, how they form and how to describe them quantitatively, their deformation and fracture behaviour at both low and elevated temperatures are examined.
* Expert, up-to-date guidance on the appropriate techniques of local chemical analysis * Comprehensive. This volume is an ideal starting point for material research and development, bringing together a number of techniques usually only found in isolation * Recent examples of the applications of techniques are provided in all cases Helping to solve the problems of materials scientists in academia and industry, this book offers guidance on appropriate techniques of chemical analysis of materials at the local level, down to the atomic scale. Comparisons are made between various techniques in terms of the nature of the probe employed. The detection limit and the optimum spatial resolution is also considered, as well as the range of atomic number that may be identified and the precision and methods of calibration, where appropriate. The Local Chemical Analysis of Materials is amply illustrated allowing the reader to easily see typical results. It includes a comparative table of techniques to aid selection for analysis and a table of acronyms, particularly valuable in this jargon-riddled area.
Precipitation Hardening (or age-hardening) is an important technique for the metal-using industries. The process is used to enhance the mechanical properties of a wide range of alloys, notably those based on aluminium, but also embracing some nickel and other non-ferrous alloys as well as certain steels. It is important that the mechanisms that produce this improvement in properties are understood so that the desired properties can be optimised. This book provides a thorough treatment and grounding in the subject for the student of materials science and engineering, as well as guidance, for those using the process in industry and in research. A number of excerpts from classic papers are included, which illustrate the development of precipitation hardening from being an art to a science.Precipitation Hardening (or age-hardening) is an important technique for the metal-using industries. The process is used to enhance the mechanical properties of a wide range of alloys, notably those based on aluminium, but also embracing some nickel and other non-ferrous alloys as well as certain steels. It is important that the mechanisms that produce this improvement in properties are understood so that the desired properties can be optimised. This book provides a thorough treatment and grounding in the subject for the student of materials science and engineering, as well as guidance, for those using the process in industry and in research. A number of excerpts from classic papers are included, which illustrate the development of precipitation hardening from being an art to a science.
The second edition of this textbook, popular amongst students and faculty alike, investigates the various causes of thermodynamic instability in metallic microstructures. Materials theoretically well designed for a particular application may prove inefficient or even useless unless stable under normal working conditions. The authors examine current experimental and theoretical understanding of the kinetics behind structural change in metals. The entire text has been updated in this new edition, and a completely new chapter on highly metastable alloys has been added. The degree to which kinetic stability of the material outweighs its thermodynamic instability is very important, and dictates the useful working life of the material. If the structure is initially produced to an optimum, such changes will degrade the properties of the material. This comprehensive and well-illustrated text, accompanied by ample references, will allow final year undergraduates, graduate students and research workers to investigate in detail the stability of microstructure in metallic systems.
The second edition of this textbook, popular among students and faculty alike, investigates the various causes of thermodynamic instability in metallic microstructures. It examines current experimental and theoretical understanding of the kinetics behind structural change in metals. The entire text has been updated in this new edition, including a completely new chapter on highly metastable alloys. A comprehensive and well-illustrated text, accompanied by ample references, this volume will allow final year undergraduates, graduate students and research workers to investigate in detail the stability of microstructure in metallic systems.
Originally published in 1882 this early work on Float Fishing and Spinning is both expensive and hard to find in its first edition. This fascinating work is thoroughly recommended for inclusion on the bookshelf of all anglers containing chapters on Barbel, Roach, Pike and many others. Many of the earliest books, particularly those dating back to 1900s and before, are now extremely scarce and increasingly expensive. We are republishing these classic works in affordable, high quality, modern editions, using the original artwork and text.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.