Examining processes that affect more than 70 percent of consumer products ranging from computers to medical devices and automobiles, this reference presents the latest research in automated plastic injection and die casting mold design and manufacture. It analyzes many industrial examples and methodologies while focusing on the algorithms, implemen
The term rapid prototyping (RP) refers to a generic group of emerging technologies that enable very quick fabrication of engineering components primarily targeted for prototyping applications. With RP, very complex threeƯ dimensional parts or prototypes can be fabricated without the need of costly tooling and machining. This inevitably leads to much shorter design cycle time and lower cost of building a prototype. Its manifold benefits include significant productivity gains, cost saving, and shortened development time to introduce concept models. As such, RP technologies have attracted tremendous R & D interests from both academia and industry in the past decade. Many different processes and materials have been commercialized and used in industry primarily for the fabrication of physical prototypes. More recent interests in RP technologies are towards functional applications of the fabricated parts, such as in rapid tooling applications and replacements of damaged components. Many processes and materials have been commercialized but are yet to be able to fulfill the aforementioned functional requirements because of limited mechanical strengths of the fabricated parts.
The term rapid prototyping (RP) refers to a generic group of emerging technologies that enable very quick fabrication of engineering components primarily targeted for prototyping applications. With RP, very complex threeƯ dimensional parts or prototypes can be fabricated without the need of costly tooling and machining. This inevitably leads to much shorter design cycle time and lower cost of building a prototype. Its manifold benefits include significant productivity gains, cost saving, and shortened development time to introduce concept models. As such, RP technologies have attracted tremendous R & D interests from both academia and industry in the past decade. Many different processes and materials have been commercialized and used in industry primarily for the fabrication of physical prototypes. More recent interests in RP technologies are towards functional applications of the fabricated parts, such as in rapid tooling applications and replacements of damaged components. Many processes and materials have been commercialized but are yet to be able to fulfill the aforementioned functional requirements because of limited mechanical strengths of the fabricated parts.
Examining processes that affect more than 70 percent of consumer products ranging from computers to medical devices and automobiles, this reference presents the latest research in automated plastic injection and die casting mold design and manufacture. It analyzes many industrial examples and methodologies while focusing on the algorithms, implemen
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.