This (post) graduate text gives a broad introduction to Lie groups and algebras with an emphasis on differential geometrical methods. It analyzes the structure of compact Lie groups in terms of the action of the group on itself by conjugation, culminating in the classification of the representations of compact Lie groups and their realization as sections of holomorphic line bundles over flag manifolds. Appendices provide background reviews.
This volume is a useful introduction to the subject of Fourier Integral Operators and is based on the author’s classic set of notes. Covering a range of topics from Hörmander’s exposition of the theory, Duistermaat approaches the subject from symplectic geometry and includes application to hyperbolic equations (= equations of wave type) and oscillatory asymptotic solutions which may have caustics. This text is suitable for mathematicians and (theoretical) physicists with an interest in (linear) partial differential equations, especially in wave propagation, rep. WKB-methods.
Part one of the authors' comprehensive and innovative work on multidimensional real analysis. This book is based on extensive teaching experience at Utrecht University and gives a thorough account of differential analysis in multidimensional Euclidean space. It is an ideal preparation for students who wish to go on to more advanced study. The notation is carefully organized and all proofs are clean, complete and rigorous. The authors have taken care to pay proper attention to all aspects of the theory. In many respects this book presents an original treatment of the subject and it contains many results and exercises that cannot be found elsewhere. The numerous exercises illustrate a variety of applications in mathematics and physics. This combined with the exhaustive and transparent treatment of subject matter make the book ideal as either the text for a course, a source of problems for a seminar or for self study.
When visiting M.I.T. for two weeks in October 1994, Victor Guillemin made me enthusiastic about a problem in symplectic geometry which involved the use of the so-called spin-c Dirac operator. Back in Berkeley, where I had l spent a sabbatical semester , I tried to understand the basic facts about this operator: its definition, the main theorems about it, and their proofs. This book is an outgrowth of the notes in which I worked this out. For me this was a great learning experience because of the many beautiful mathematical structures which are involved. I thank the Editorial Board of Birkhauser, especially Haim Brezis, for sug gesting the publication of these notes as a book. I am also very grateful for the suggestions by the referees, which have led to substantial improvements in the presentation. Finally I would like to express special thanks to Ann Kostant for her help and her prodding me, in her charming way, into the right direction. J.J. Duistermaat Utrecht, October 16, 1995.
What is the true mark of inspiration? Ideally it may mean the originality, freshness and enthusiasm of a new breakthrough in mathematical thought. The reader will feel this inspiration in all four seminal papers by Duistermaat, Guillemin and Hörmander presented here for the first time ever in one volume. However, as time goes by, the price researchers have to pay is to sacrifice simplicity for the sake of a higher degree of abstraction. Thus the original idea will only be a foundation on which more and more abstract theories are being built. It is the unique feature of this book to combine the basic motivations and ideas of the early sources with knowledgeable and lucid expositions on the present state of Fourier Integral Operators, thus bridging the gap between the past and present. A handy and useful introduction that will serve novices in this field and working mathematicians equally well.
This book is devoted to Quisped, Roberts, and Thompson (QRT) maps, considered as automorphisms of rational elliptic surfaces. The theory of QRT maps arose from problems in mathematical physics, involving difference equations. The application of QRT maps to these and other problems in the literature, including Poncelet mapping and the elliptic billiard, is examined in detail. The link between elliptic fibrations and completely integrable Hamiltonian systems is also discussed. The book begins with a comprehensive overview of the subject, including QRT maps, singularity confinement, automorphisms of rational elliptic surfaces, action on homology classes, and periodic QRT maps. Later chapters cover these topics and more in detail. While QRT maps will be familiar to specialists in algebraic geometry, the present volume makes the subject accessible to mathematicians and graduate students in a classroom setting or for self-study.
This volume is a useful introduction to the subject of Fourier Integral Operators and is based on the author’s classic set of notes. Covering a range of topics from Hörmander’s exposition of the theory, Duistermaat approaches the subject from symplectic geometry and includes application to hyperbolic equations (= equations of wave type) and oscillatory asymptotic solutions which may have caustics. This text is suitable for mathematicians and (theoretical) physicists with an interest in (linear) partial differential equations, especially in wave propagation, rep. WKB-methods.
When visiting M.I.T. for two weeks in October 1994, Victor Guillemin made me enthusiastic about a problem in symplectic geometry which involved the use of the so-called spin-c Dirac operator. Back in Berkeley, where I had l spent a sabbatical semester , I tried to understand the basic facts about this operator: its definition, the main theorems about it, and their proofs. This book is an outgrowth of the notes in which I worked this out. For me this was a great learning experience because of the many beautiful mathematical structures which are involved. I thank the Editorial Board of Birkhauser, especially Haim Brezis, for sug gesting the publication of these notes as a book. I am also very grateful for the suggestions by the referees, which have led to substantial improvements in the presentation. Finally I would like to express special thanks to Ann Kostant for her help and her prodding me, in her charming way, into the right direction. J.J. Duistermaat Utrecht, October 16, 1995.
This textbook is an application-oriented introduction to the theory of distributions, a powerful tool used in mathematical analysis. The treatment emphasizes applications that relate distributions to linear partial differential equations and Fourier analysis problems found in mechanics, optics, quantum mechanics, quantum field theory, and signal analysis. The book is motivated by many exercises, hints, and solutions that guide the reader along a path requiring only a minimal mathematical background.
Part one of the authors' comprehensive and innovative work on multidimensional real analysis. This book is based on extensive teaching experience at Utrecht University and gives a thorough account of differential analysis in multidimensional Euclidean space. It is an ideal preparation for students who wish to go on to more advanced study. The notation is carefully organized and all proofs are clean, complete and rigorous. The authors have taken care to pay proper attention to all aspects of the theory. In many respects this book presents an original treatment of the subject and it contains many results and exercises that cannot be found elsewhere. The numerous exercises illustrate a variety of applications in mathematics and physics. This combined with the exhaustive and transparent treatment of subject matter make the book ideal as either the text for a course, a source of problems for a seminar or for self study.
This (post) graduate text gives a broad introduction to Lie groups and algebras with an emphasis on differential geometrical methods. It analyzes the structure of compact Lie groups in terms of the action of the group on itself by conjugation, culminating in the classification of the representations of compact Lie groups and their realization as sections of holomorphic line bundles over flag manifolds. Appendices provide background reviews.
What is the true mark of inspiration? Ideally it may mean the originality, freshness and enthusiasm of a new breakthrough in mathematical thought. The reader will feel this inspiration in all four seminal papers by Duistermaat, Guillemin and Hörmander presented here for the first time ever in one volume. However, as time goes by, the price researchers have to pay is to sacrifice simplicity for the sake of a higher degree of abstraction. Thus the original idea will only be a foundation on which more and more abstract theories are being built. It is the unique feature of this book to combine the basic motivations and ideas of the early sources with knowledgeable and lucid expositions on the present state of Fourier Integral Operators, thus bridging the gap between the past and present. A handy and useful introduction that will serve novices in this field and working mathematicians equally well.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.