This book contains both a synthesis and mathematical analysis of a wide set of algorithms and theories whose aim is the automatic segmen tation of digital images as well as the understanding of visual perception. A common formalism for these theories and algorithms is obtained in a variational form. Thank to this formalization, mathematical questions about the soundness of algorithms can be raised and answered. Perception theory has to deal with the complex interaction between regions and "edges" (or boundaries) in an image: in the variational seg mentation energies, "edge" terms compete with "region" terms in a way which is supposed to impose regularity on both regions and boundaries. This fact was an experimental guess in perception phenomenology and computer vision until it was proposed as a mathematical conjecture by Mumford and Shah. The third part of the book presents a unified presentation of the evi dences in favour of the conjecture. It is proved that the competition of one-dimensional and two-dimensional energy terms in a variational for mulation cannot create fractal-like behaviour for the edges. The proof of regularity for the edges of a segmentation constantly involves con cepts from geometric measure theory, which proves to be central in im age processing theory. The second part of the book provides a fast and self-contained presentation of the classical theory of rectifiable sets (the "edges") and unrectifiable sets ("fractals").
Recent years have seen dramatic progress in shape recognition algorithms applied to ever-growing image databases. They have been applied to image stitching, stereo vision, image mosaics, solid object recognition and video or web image retrieval. More fundamentally, the ability of humans and animals to detect and recognize shapes is one of the enigmas of perception. The book describes a complete method that starts from a query image and an image database and yields a list of the images in the database containing shapes present in the query image. A false alarm number is associated to each detection. Many experiments will show that familiar simple shapes or images can reliably be identified with false alarm numbers ranging from 10-5 to less than 10-300. Technically speaking, there are two main issues. The first is extracting invariant shape descriptors from digital images. Indeed, a shape can be seen from various angles and distances and in various lights.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.