This volume is dedicated to Bill Helton on the occasion of his sixty fifth birthday. It contains biographical material, a list of Bill's publications, a detailed survey of Bill's contributions to operator theory, optimization and control and 19 technical articles. Most of the technical articles are expository and should serve as useful introductions to many of the areas which Bill's highly original contributions have helped to shape over the last forty odd years. These include interpolation, Szegö limit theorems, Nehari problems, trace formulas, systems and control theory, convexity, matrix completion problems, linear matrix inequalities and optimization. The book should be useful to graduate students in mathematics and engineering, as well as to faculty and individuals seeking entry level introductions and references to the indicated topics. It can also serve as a supplementary text to numerous courses in pure and applied mathematics and engineering, as well as a source book for seminars.
This book teaches control system design using H8 methods. Students will find this book easy to use because it is conceptually simple. They will find it useful because of the widespread appeal of classical frequency domain methods.
H-infinity control originated from an effort to codify classical control methods, where one shapes frequency response functions for linear systems to meet certain objectives. H-infinity control underwent tremendous development in the 1980s and made considerable strides toward systematizing classical control. This book addresses the next major issue of how this extends to nonlinear systems. At the core of nonlinear control theory lie two partial differential equations (PDEs). One is a first-order evolution equation called the information state equation, which constitutes the dynamics of the controller. One can view this equation as a nonlinear dynamical system. Much of this volume is concerned with basic properties of this system, such as the nature of trajectories, stability, and, most important, how it leads to a general solution of the nonlinear H-infinity control problem.
Harmonic analysis plays an essential role in understanding a host of engineering, mathematical, and scientific ideas. In Harmonic Analysis and Applications, the analysis and synthesis of functions in terms of harmonics is presented in such a way as to demonstrate the vitality, power, elegance, usefulness, and the intricacy and simplicity of the subject. This book is about classical harmonic analysis - a textbook suitable for students, and an essay and general reference suitable for mathematicians, physicists, and others who use harmonic analysis. Throughout the book, material is provided for an upper level undergraduate course in harmonic analysis and some of its applications. In addition, the advanced material in Harmonic Analysis and Applications is well-suited for graduate courses. The course is outlined in Prologue I. This course material is excellent, not only for students, but also for scientists, mathematicians, and engineers as a general reference. Chapter 1 covers the Fourier analysis of integrable and square integrable (finite energy) functions on R. Chapter 2 of the text covers distribution theory, emphasizing the theory's useful vantage point for dealing with problems and general concepts from engineering, physics, and mathematics. Chapter 3 deals with Fourier series, including the Fourier analysis of finite and infinite sequences, as well as functions defined on finite intervals. The mathematical presentation, insightful perspectives, and numerous well-chosen examples and exercises in Harmonic Analysis and Applications make this book well worth having in your collection.
This book addresses the design of such tools for correct-by-construction synthesis of supervisors for systems and specifications represented in the discrete-event framework. The approach employed uses Petri nets as discrete-event models and structural methods for the synthesis of supervisors, and may lead to significant computational benefits. Highlighting recent progress in the design of supervisors by structural methods, the book represents a novel contribution to the field. One of the main features of the presentation is the demonstration that structural methods can address a variety of supervisor specifications under diverse supervision settings.
An operator C on a Hilbert space H dilates to an operator T on a Hilbert space K if there is an isometry V:H→K such that C=V∗TV. A main result of this paper is, for a positive integer d, the simultaneous dilation, up to a sharp factor ϑ(d), expressed as a ratio of Γ functions for d even, of all d×d symmetric matrices of operator norm at most one to a collection of commuting self-adjoint contraction operators on a Hilbert space.
Expands the lectures given at a regional conference in Lincoln, Nebraska which brought together a wide variety of scientists, pure mathematicians and engineers.
The Journal of Fourier Analysis and Applications is a journal of the mathematical sciences devoted to Fourier analysis and its applications. The subject of Fourier analysis has had a major impact on the development of mathematics, on the understanding of many engineering and scientific phenomena, and on the solution of some of the most important problems in mathematics and the sciences. At the end of June 1993, a large Conference in Harmonic Analysis was held at the University of Paris-Sud at Orsay to celebrate the prominent role played by Jean-Pierre Kahane and his numerous achievements in this field. The large variety of topics discussed in this meeting, ranging from classical Harmonic Analysis to Probability Theory, reflects the intense mathematical curiosity and the broad mathematical interest of Jean-Pierre Kahane. Indeed, all of them are connected to his work. The mornings were devoted to plenary addresses while up to four parallel sessions took place in the afternoons. Altogether, there were about eighty speakers. This wide range of subjects appears in these proceedings which include thirty six articles.
This volume introduces equivariant homotopy, homology, and cohomology theory, along with various related topics in modern algebraic topology. It explains the main ideas behind some of the most striking recent advances in the subject. The works begins with a development of the equivariant algebraic topology of spaces culminating in a discussion of the Sullivan conjecture that emphasizes its relationship with classical Smith theory. The book then introduces equivariant stable homotopy theory, the equivariant stable homotopy category, and the most important examples of equivariant cohomology theories. The basic machinery that is needed to make serious use of equivariant stable homotopy theory is presented next, along with discussions of the Segal conjecture and generalized Tate cohomology. Finally, the book gives an introduction to "brave new algebra", the study of point-set level algebraic structures on spectra and its equivariant applications. Emphasis is placed on equivariant complex cobordism, and related results on that topic are presented in detail.
This volume is based on lectures on division algebras given at a conference held at Colorado State University. Although division algebras are a very classical object, this book presents this ""classical"" material in a new way, highlighting current approaches and new theorems, and illuminating the connections with a variety of areas in mathematics.
This book provides a self-contained introduction to the theory of infinite-dimensional systems theory and its applications to port-Hamiltonian systems. The textbook starts with elementary known results, then progresses smoothly to advanced topics in current research. Many physical systems can be formulated using a Hamiltonian framework, leading to models described by ordinary or partial differential equations. For the purpose of control and for the interconnection of two or more Hamiltonian systems it is essential to take into account this interaction with the environment. This book is the first textbook on infinite-dimensional port-Hamiltonian systems. An abstract functional analytical approach is combined with the physical approach to Hamiltonian systems. This combined approach leads to easily verifiable conditions for well-posedness and stability. The book is accessible to graduate engineers and mathematicians with a minimal background in functional analysis. Moreover, the theory is illustrated by many worked-out examples.
This volume is dedicated to the fundamentals of convex functional analysis. It presents those aspects of functional analysis that are extensively used in various applications to mechanics and control theory. The purpose of the text is essentially two-fold. On the one hand, a bare minimum of the theory required to understand the principles of functional, convex and set-valued analysis is presented. Numerous examples and diagrams provide as intuitive an explanation of the principles as possible. On the other hand, the volume is largely self-contained. Those with a background in graduate mathematics will find a concise summary of all main definitions and theorems.
Intensive research in matrix completions, moments, and sums of Hermitian squares has yielded a multitude of results in recent decades. This book provides a comprehensive account of this quickly developing area of mathematics and applications and gives complete proofs of many recently solved problems. With MATLAB codes and more than 200 exercises, the book is ideal for a special topics course for graduate or advanced undergraduate students in mathematics or engineering, and will also be a valuable resource for researchers. Often driven by questions from signal processing, control theory, and quantum information, the subject of this book has inspired mathematicians from many subdisciplines, including linear algebra, operator theory, measure theory, and complex function theory. In turn, the applications are being pursued by researchers in areas such as electrical engineering, computer science, and physics. The book is self-contained, has many examples, and for the most part requires only a basic background in undergraduate mathematics, primarily linear algebra and some complex analysis. The book also includes an extensive discussion of the literature, with close to 600 references from books and journals from a wide variety of disciplines.
Treats sizing and shape optimization in a comprehensive way, covering everything from mathematical theory through computational aspects to industrial applications.
The study of group actions on manifolds is the meeting ground of a variety of mathematical areas. In particular, interesting geometric insights can be obtained by applying measure-theoretic techniques. This book provides an introduction to some of the important methods, major developments, and open problems in the subject. It is slightly expanded from lectures given by Zimmer at the CBMS conference at the University of Minnesota. The main text presents a perspective on the field as it was at that time. Comments at the end of each chapter provide selected suggestions for further reading, including references to recent developments."--BOOK JACKET.
This is a self-contained introduction to the theory of information and coding. It can be used either for self-study or as the basis for a course at either the graduate or ,undergraduate level. The text includes dozens of worked examples and several hundred problems for solution.
During World War II, the air over the continental United States was a virtual third front. The little-known statistics are alarming: the Army Air Forces lost more than 4,500 aircraft in combat against Japanese army and naval air forces in the war. During the same time, the AAF lost more than 7,100 aircraft in the United States to accidents in training and transportation. Such accidents claimed the lives of more than 15,530 pilots, crewmembers and ground personnel, and the stories of their deaths are largely forgotten. This work chronicles the 6,350 known fatal AAF aircraft accidents that occurred in the continental United States from January 1941 through December 1945. Each crash summary, based on official records, provides details such as crash location and cause, the people involved and the type and number of aircraft. An aircraft serial number index, a record of AAF aircraft still listed as missing, crash statistics and a directory of AAF stations in the United States are included.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.