The batch distillation process has existed for many centuries. It is perhaps the oldest technology for separating or purifying liquid mixtures and is the most frequently used separation method in batch processes. In the last 25 years, with continuous development of faster computers and sophisticated numerical methods, there have been many published works using detailed mathematical models with rigorous physical property calculations and advanced optimisation techniques to address several important issues, such as selection of column configurations, design, operation, off-cut recycling, use of batch distillation in reactive and extractive modes, etc.Batch Distillation: Design and Operation presents excellent, important contributions of many researchers from around the globe, including those of the author and his co-workers./a
Desalination Technologies: Design and Operation sets the scene for desalination technologies as a long-term solution to freshwater demand by analyzing the current demand for water, available water resources and future predicted demand. The book captures recent developments in thermal desalination (multistage flash desalination, multi-effect evaporation, vapor compression), membrane desalination (forward osmosis, reverse osmosis, pressure retarded, electrodialysis, membrane distillation, ultra-, nano-, and micro-filtration), and alternative processes such as freezing and ion exchange. Both dynamic and steady state models (from short cut, simple, to detail) of various desalination processes are discussed. The book is intended for (under)graduate students in chemical engineering and postgraduate researchers and industrial practitioners in desalination. - Provides the fundamentals of different desalination processes - Includes desalination modeling from short and simple, to detailed and more advanced - Discusses desalination optimization and synthesis to reduce environmental impact - Handles thermo-physical property models and correlations - Includes case studies to give a clearer understanding of desalination
A milk pasteurization process is a nonlinear process and multivariable interacting system. This makes it difficultly to control by the conventional on-off controllers. Even if the on-off controller can managed the milk temperatures in the holding tube and the cooling stage of the plate pasteurizer according to the plant's requirements, the dynamic profiles of the milk temperature are oscillating around a desired value. Consequently, this work is aimed at improving the control performance by a multi-variables control approach with model predictive control (MPC). The proposed algorithm was tested in the case of set point tracking under nominal condition gathered by the real observation. To compare the performance of the MPC controller, a model-based control approach of generic model control (GMC) coupled with cascade control strategy is taken into account. The simulation results demonstrated that a proposed control algorithm performed well in keeping both the milk and water temperatures at the desired set points without any oscillation and overshoot. Because of the predictive control strategy, the control response for MPC was less drastic control action compared to the GMC.
This work investigates in detail several methodologies to improve the optimal control of discontinuous processes. It shows that whenever a batch dynamic optimization is solved, the optimum is related to the control methodology adopted and the result is a sub-optimum since other more (or apparently less!) appealing control methodologies might lead to “better” optimal solutions. The selection of the best control methodology for the dynamic optimization is broached for batch reactors using gPROMS models builder 3.5.2 for dynamic modeling and BzzMath 6.0 optimizers to handle control and optimization issues.
Desalination Technologies: Design and Operation sets the scene for desalination technologies as a long-term solution to freshwater demand by analyzing the current demand for water, available water resources and future predicted demand. The book captures recent developments in thermal desalination (multistage flash desalination, multi-effect evaporation, vapor compression), membrane desalination (forward osmosis, reverse osmosis, pressure retarded, electrodialysis, membrane distillation, ultra-, nano-, and micro-filtration), and alternative processes such as freezing and ion exchange. Both dynamic and steady state models (from short cut, simple, to detail) of various desalination processes are discussed. The book is intended for (under)graduate students in chemical engineering and postgraduate researchers and industrial practitioners in desalination. - Provides the fundamentals of different desalination processes - Includes desalination modeling from short and simple, to detailed and more advanced - Discusses desalination optimization and synthesis to reduce environmental impact - Handles thermo-physical property models and correlations - Includes case studies to give a clearer understanding of desalination
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.