It is remarkable that various distinct physical phenomena, such as wave propagation, heat diffusion, electron movement in quantum mechanics, oscillations of fluid in a container, can be described using the same differential operator, the Laplacian. Spectral data (i.e., eigenvalues and eigenfunctions) of the Laplacian depend in a subtle way on the geometry of the underlying object, e.g., a Euclidean domain or a Riemannian manifold, on which the operator is defined. This dependence, or, rather, the interplay between the geometry and the spectrum, is the main subject of spectral geometry. Its roots can be traced to Ernst Chladni's experiments with vibrating plates, Lord Rayleigh's theory of sound, and Mark Kac's celebrated question “Can one hear the shape of a drum?” In the second half of the twentieth century spectral geometry emerged as a separate branch of geometric analysis. Nowadays it is a rapidly developing area of mathematics, with close connections to other fields, such as differential geometry, mathematical physics, partial differential equations, number theory, dynamical systems, and numerical analysis. This book can be used for a graduate or an advanced undergraduate course on spectral geometry, starting from the basics but at the same time covering some of the exciting recent developments which can be explained without too many prerequisites.
This volume contains a collection of papers presented at the workshop on Spectrum and Dynamics held at the CRM in April 2008. In recent years. many new exciting connections have been established between the spectral theory of elliptic operators and the theory of dynamical systems. A number of articles in the proceedings highlight these discoveries. The volume features a diversity of topics. Such as quantum chaos, spectral geometry. Semiclassical analysis, number theory and ergodic theory. Apart from the research papers aimed at the experts, this book includes several survey articles accessible to a broad math ematical audience.
It is remarkable that various distinct physical phenomena, such as wave propagation, heat diffusion, electron movement in quantum mechanics, oscillations of fluid in a container, can be described using the same differential operator, the Laplacian. Spectral data (i.e., eigenvalues and eigenfunctions) of the Laplacian depend in a subtle way on the geometry of the underlying object, e.g., a Euclidean domain or a Riemannian manifold, on which the operator is defined. This dependence, or, rather, the interplay between the geometry and the spectrum, is the main subject of spectral geometry. Its roots can be traced to Ernst Chladni's experiments with vibrating plates, Lord Rayleigh's theory of sound, and Mark Kac's celebrated question “Can one hear the shape of a drum?” In the second half of the twentieth century spectral geometry emerged as a separate branch of geometric analysis. Nowadays it is a rapidly developing area of mathematics, with close connections to other fields, such as differential geometry, mathematical physics, partial differential equations, number theory, dynamical systems, and numerical analysis. This book can be used for a graduate or an advanced undergraduate course on spectral geometry, starting from the basics but at the same time covering some of the exciting recent developments which can be explained without too many prerequisites.
This volume contains a collection of papers presented at the workshop on Spectrum and Dynamics held at the CRM in April 2008. In recent years. many new exciting connections have been established between the spectral theory of elliptic operators and the theory of dynamical systems. A number of articles in the proceedings highlight these discoveries. The volume features a diversity of topics. Such as quantum chaos, spectral geometry. Semiclassical analysis, number theory and ergodic theory. Apart from the research papers aimed at the experts, this book includes several survey articles accessible to a broad math ematical audience.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.