Although they play a fundamental role in nearly all branches of mathematics, inequalities are usually obtained by ad hoc methods rather than as consequences of some underlying "theory of inequalities." For certain kinds of inequalities, the notion of majorization leads to such a theory that is sometimes extremely useful and powerful for deriving inequalities. Moreover, the derivation of an inequality by methods of majorization is often very helpful both for providing a deeper understanding and for suggesting natural generalizations.Anyone wishing to employ majorization as a tool in applications can make use of the theorems; for the most part, their statements are easily understood.
The main purpose of this book is to address the statistical issues for integrating independent studies. There exist a number of papers and books that discuss the mechanics of collecting, coding, and preparing data for a meta-analysis , and we do not deal with these. Because this book concerns methodology, the content necessarily is statistical, and at times mathematical. In order to make the material accessible to a wider audience, we have not provided proofs in the text. Where proofs are given, they are placed as commentary at the end of a chapter. These can be omitted at the discretion of the reader.Throughout the book we describe computational procedures whenever required. Many computations can be completed on a hand calculator, whereas some require the use of a standard statistical package such as SAS, SPSS, or BMD. Readers with experience using a statistical package or who conduct analyses such as multiple regression or analysis of variance should be able to carry out the analyses described with the aid of a statistical package.
This book challenges traditional, sanctioned, and official histories of reading comprehension by examining how ideological and cultural hegemony work to reproduce dominant ideologies through education in general and reading comprehension research and testing specifically. Willis analyzes the ideological and cultural foundations that underpin concepts, theories, research, tests, and interpretations, and connects these to the broader social and political contexts within U.S. history in which reading comprehension research and testing have evolved. The reconstruction of a history of reading comprehension research and testing in this way demystifies past and current assumptions about the interconnections among researchers, reading comprehension research, and standardized reading comprehension tests. A promising vision of the future of reading comprehension research and testing emerges–one that is more complex, multidimensional, inclusive, and socially just. Reading Comprehension Research and Testing in the U.S. aims to revolutionize how reading comprehension is conceived, theorized, tested, and interpreted for all children. This is a critically relevant volume for educational researchers, teacher educators, school administrators, teachers, policy makers, and all those concerned with school literacy and educational equity.
This book is devoted to the study of univariate distributions appropriate for the analyses of data known to be nonnegative. The book includes much material from reliability theory in engineering and survival analysis in medicine.
Published in honor of the sixty-fifth birthday of Professor Ingram Olkin of Stanford University. Part I contains a brief biography of Professor Olkin and an interview with him discussing his career and his research interests. Part II contains 32 technical papers written in Professor Olkin's honor by his collaborators, colleagues, and Ph.D. students. These original papers cover a wealth of topics in mathematical and applied statistics, including probability inequalities and characterizations, multivariate analysis and association, linear and nonlinear models, ranking and selection, experimental design, and approaches to statistical inference. The volume reflects the wide range of Professor Olkin's interests in and contributions to research in statistics, and provides an overview of new developments in these areas of research.
The main purpose of this book is to address the statistical issues for integrating independent studies. There exist a number of papers and books that discuss the mechanics of collecting, coding, and preparing data for a meta-analysis , and we do not deal with these. Because this book concerns methodology, the content necessarily is statistical, and at times mathematical. In order to make the material accessible to a wider audience, we have not provided proofs in the text. Where proofs are given, they are placed as commentary at the end of a chapter. These can be omitted at the discretion of the reader.Throughout the book we describe computational procedures whenever required. Many computations can be completed on a hand calculator, whereas some require the use of a standard statistical package such as SAS, SPSS, or BMD. Readers with experience using a statistical package or who conduct analyses such as multiple regression or analysis of variance should be able to carry out the analyses described with the aid of a statistical package.
Although they play a fundamental role in nearly all branches of mathematics, inequalities are usually obtained by ad hoc methods rather than as consequences of some underlying "theory of inequalities." For certain kinds of inequalities, the notion of majorization leads to such a theory that is sometimes extremely useful and powerful for deriving inequalities. Moreover, the derivation of an inequality by methods of majorization is often very helpful both for providing a deeper understanding and for suggesting natural generalizations.Anyone wishing to employ majorization as a tool in applications can make use of the theorems; for the most part, their statements are easily understood.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.