A comprehensive guide to ranks and group theory Ranks of Groups features a logical, straightforward presentation, beginning with a succinct discussion of the standard ranks before moving on to specific aspects of ranks of groups. Topics covered include section ranks, groups of finite 0-rank, minimax rank, special rank, groups of finite section p-rank, groups having finite section p-rank for all primes p, groups of finite bounded section rank, groups whose abelian subgroups have finite rank, groups whose abelian subgroups have bounded finite rank, finitely generated groups having finite rank, residual properties of groups of finite rank, groups covered by normal subgroups of bounded finite rank, and theorems of Schur and Baer. This book presents fundamental concepts and notions related to the area of ranks in groups. Class-tested worldwide by highly qualified authors in the fields of abstract algebra and group theory, this book focuses on critical concepts with the most interesting, striking, and central results. In order to provide readers with the most useful techniques related to the various different ranks in a group, the authors have carefully examined hundreds of current research articles on group theory authored by researchers around the world, providing an up-to-date, comprehensive treatment of the subject. • All material has been thoroughly vetted and class-tested by well-known researchers who have worked in the area of rank conditions in groups • Topical coverage reflects the most modern, up-to-date research on ranks of groups • Features a unified point-of-view on the most important results in ranks obtained using various methods so as to illustrate the role those ranks play within group theory • Focuses on the tools and methods concerning ranks necessary to achieve significant progress in the study and clarification of the structure of groups Ranks of Groups: The Tools, Characteristics, and Restrictions is an excellent textbook for graduate courses in mathematics, featuring numerous exercises, whose solutions are provided. This book will be an indispensable resource for mathematicians and researchers specializing in group theory and abstract algebra. MARTYN R. DIXON, PhD, is Professor in the Department of Mathematics at the University of Alabama. LEONID A. KURDACHENKO, PhD, DrS, is Distinguished Professor and Chair of the Department of Algebra at the University of Dnepropetrovsk, Ukraine. IGOR YA SUBBOTIN, PhD, is Professor in the Department of Mathematics and Natural Sciences at National University in Los Angeles, California.
Linear Groups: The Accent on Infinite Dimensionality explores some of the main results and ideas in the study of infinite-dimensional linear groups. The theory of finite dimensional linear groups is one of the best developed algebraic theories. The array of articles devoted to this topic is enormous, and there are many monographs concerned with matrix groups, ranging from old, classical texts to ones published more recently. However, in the case when the dimension is infinite (and such cases arise quite often), the reality is quite different. The situation with the study of infinite dimensional linear groups is like the situation that has developed in the theory of groups, in the transition from the study of finite groups to the study of infinite groups which appeared about one hundred years ago. It is well known that this transition was extremely efficient and led to the development of a rich and central branch of algebra: Infinite group theory. The hope is that this book can be part of a similar transition in the field of linear groups. Features This is the first book dedicated to infinite-dimensional linear groups This is written for experts and graduate students specializing in algebra and parallel disciplines This book discusses a very new theory and accumulates many important and useful results
A reader-friendly introduction to modern algebra with important examples from various areas of mathematics Featuring a clear and concise approach, An Introduction to Essential Algebraic Structures presents an integrated approach to basic concepts of modern algebra and highlights topics that play a central role in various branches of mathematics. The authors discuss key topics of abstract and modern algebra including sets, number systems, groups, rings, and fields. The book begins with an exposition of the elements of set theory and moves on to cover the main ideas and branches of abstract algebra. In addition, the book includes: Numerous examples throughout to deepen readers’ knowledge of the presented material An exercise set after each chapter section in an effort to build a deeper understanding of the subject and improve knowledge retention Hints and answers to select exercises at the end of the book A supplementary website with an Instructors Solutions manual An Introduction to Essential Algebraic Structures is an excellent textbook for introductory courses in abstract algebra as well as an ideal reference for anyone who would like to be more familiar with the basic topics of abstract algebra.
In recent times, group theory has found wider applications in various fields of algebra and mathematics in general. But in order to apply this or that result, you need to know about it, and such results are often diffuse and difficult to locate, necessitating that readers construct an extended search through multiple monographs, articles, and papers. Such readers must wade through the morass of concepts and auxiliary statements that are needed to understand the desired results, while it is initially unclear which of them are really needed and which ones can be dispensed with. A further difficulty that one may encounter might be concerned with the form or language in which a given result is presented. For example, if someone knows the basics of group theory, but does not know the theory of representations, and a group theoretical result is formulated in the language of representation theory, then that person is faced with the problem of translating this result into the language with which they are familiar, etc. Infinite Groups: A Roadmap to Some Classical Areas seeks to overcome this challenge. The book covers a broad swath of the theory of infinite groups, without giving proofs, but with all the concepts and auxiliary results necessary for understanding such results. In other words, this book is an extended directory, or a guide, to some of the more established areas of infinite groups. Features An excellent resource for a subject formerly lacking an accessible and in-depth reference Suitable for graduate students, PhD students, and researchers working in group theory Introduces the reader to the most important methods, ideas, approaches, and constructions in infinite group theory.
Explore the main algebraic structures and number systems that play a central role across the field of mathematics Algebra and number theory are two powerful branches of modern mathematics at the forefront of current mathematical research, and each plays an increasingly significant role in different branches of mathematics, from geometry and topology to computing and communications. Based on the authors' extensive experience within the field, Algebra and Number Theory has an innovative approach that integrates three disciplines—linear algebra, abstract algebra, and number theory—into one comprehensive and fluid presentation, facilitating a deeper understanding of the topic and improving readers' retention of the main concepts. The book begins with an introduction to the elements of set theory. Next, the authors discuss matrices, determinants, and elements of field theory, including preliminary information related to integers and complex numbers. Subsequent chapters explore key ideas relating to linear algebra such as vector spaces, linear mapping, and bilinear forms. The book explores the development of the main ideas of algebraic structures and concludes with applications of algebraic ideas to number theory. Interesting applications are provided throughout to demonstrate the relevance of the discussed concepts. In addition, chapter exercises allow readers to test their comprehension of the presented material. Algebra and Number Theory is an excellent book for courses on linear algebra, abstract algebra, and number theory at the upper-undergraduate level. It is also a valuable reference for researchers working in different fields of mathematics, computer science, and engineering as well as for individuals preparing for a career in mathematics education.
This book highlights important developments on artinian modules over group rings of generalized nilpotent groups. Along with traditional topics such as direct decompositions of artinian modules, criteria of complementability for some important modules, and criteria of semisimplicity of artinian modules, it also focuses on recent advanced results on these matters.
The influence of different gomomorphic images on the structure of a group is one of the most important and natural problems of group theory. The problem of describing a group with all its gomomorphic images known, i.e. reconstructing the whole thing using its reflections, seems especially natural and promising. This theme has a history that is almost a half-century long. The authors of this book present well-established results as well as newer, contemporary achievements in this area from the common integral point of view. This view is based on the implementation of module theory for solving group problems. Evidently, this approach requires investigation of some specific types of modules: infinite simple modules and just infinite modules (note that every infinite noetherian module has either an infinite simple factor-module or a just infinite factor-module). This book will therefore be useful for group theorists as well as ring and module theorists. Also, the level, style, and presentation make the book easily accessible to graduate students.
A reader-friendly introduction to modern algebra with important examples from various areas of mathematics Featuring a clear and concise approach, An Introduction to Essential Algebraic Structures presents an integrated approach to basic concepts of modern algebra and highlights topics that play a central role in various branches of mathematics. The authors discuss key topics of abstract and modern algebra including sets, number systems, groups, rings, and fields. The book begins with an exposition of the elements of set theory and moves on to cover the main ideas and branches of abstract algebra. In addition, the book includes: Numerous examples throughout to deepen readers’ knowledge of the presented material An exercise set after each chapter section in an effort to build a deeper understanding of the subject and improve knowledge retention Hints and answers to select exercises at the end of the book A supplementary website with an Instructors Solutions manual An Introduction to Essential Algebraic Structures is an excellent textbook for introductory courses in abstract algebra as well as an ideal reference for anyone who would like to be more familiar with the basic topics of abstract algebra.
A comprehensive guide to ranks and group theory Ranks of Groups features a logical, straightforward presentation, beginning with a succinct discussion of the standard ranks before moving on to specific aspects of ranks of groups. Topics covered include section ranks, groups of finite 0-rank, minimax rank, special rank, groups of finite section p-rank, groups having finite section p-rank for all primes p, groups of finite bounded section rank, groups whose abelian subgroups have finite rank, groups whose abelian subgroups have bounded finite rank, finitely generated groups having finite rank, residual properties of groups of finite rank, groups covered by normal subgroups of bounded finite rank, and theorems of Schur and Baer. This book presents fundamental concepts and notions related to the area of ranks in groups. Class-tested worldwide by highly qualified authors in the fields of abstract algebra and group theory, this book focuses on critical concepts with the most interesting, striking, and central results. In order to provide readers with the most useful techniques related to the various different ranks in a group, the authors have carefully examined hundreds of current research articles on group theory authored by researchers around the world, providing an up-to-date, comprehensive treatment of the subject. • All material has been thoroughly vetted and class-tested by well-known researchers who have worked in the area of rank conditions in groups • Topical coverage reflects the most modern, up-to-date research on ranks of groups • Features a unified point-of-view on the most important results in ranks obtained using various methods so as to illustrate the role those ranks play within group theory • Focuses on the tools and methods concerning ranks necessary to achieve significant progress in the study and clarification of the structure of groups Ranks of Groups: The Tools, Characteristics, and Restrictions is an excellent textbook for graduate courses in mathematics, featuring numerous exercises, whose solutions are provided. This book will be an indispensable resource for mathematicians and researchers specializing in group theory and abstract algebra. MARTYN R. DIXON, PhD, is Professor in the Department of Mathematics at the University of Alabama. LEONID A. KURDACHENKO, PhD, DrS, is Distinguished Professor and Chair of the Department of Algebra at the University of Dnepropetrovsk, Ukraine. IGOR YA SUBBOTIN, PhD, is Professor in the Department of Mathematics and Natural Sciences at National University in Los Angeles, California.
In recent times, group theory has found wider applications in various fields of algebra and mathematics in general. But in order to apply this or that result, you need to know about it, and such results are often diffuse and difficult to locate, necessitating that readers construct an extended search through multiple monographs, articles, and papers. Such readers must wade through the morass of concepts and auxiliary statements that are needed to understand the desired results, while it is initially unclear which of them are really needed and which ones can be dispensed with. A further difficulty that one may encounter might be concerned with the form or language in which a given result is presented. For example, if someone knows the basics of group theory, but does not know the theory of representations, and a group theoretical result is formulated in the language of representation theory, then that person is faced with the problem of translating this result into the language with which they are familiar, etc. Infinite Groups: A Roadmap to Some Classical Areas seeks to overcome this challenge. The book covers a broad swath of the theory of infinite groups, without giving proofs, but with all the concepts and auxiliary results necessary for understanding such results. In other words, this book is an extended directory, or a guide, to some of the more established areas of infinite groups. Features An excellent resource for a subject formerly lacking an accessible and in-depth reference Suitable for graduate students, PhD students, and researchers working in group theory Introduces the reader to the most important methods, ideas, approaches, and constructions in infinite group theory.
Linear Groups: The Accent on Infinite Dimensionality explores some of the main results and ideas in the study of infinite-dimensional linear groups. The theory of finite dimensional linear groups is one of the best developed algebraic theories. The array of articles devoted to this topic is enormous, and there are many monographs concerned with matrix groups, ranging from old, classical texts to ones published more recently. However, in the case when the dimension is infinite (and such cases arise quite often), the reality is quite different. The situation with the study of infinite dimensional linear groups is like the situation that has developed in the theory of groups, in the transition from the study of finite groups to the study of infinite groups which appeared about one hundred years ago. It is well known that this transition was extremely efficient and led to the development of a rich and central branch of algebra: Infinite group theory. The hope is that this book can be part of a similar transition in the field of linear groups. Features This is the first book dedicated to infinite-dimensional linear groups This is written for experts and graduate students specializing in algebra and parallel disciplines This book discusses a very new theory and accumulates many important and useful results
This book highlights important developments on artinian modules over group rings of generalized nilpotent groups. Along with traditional topics such as direct decompositions of artinian modules, criteria of complementability for some important modules, and criteria of semisimplicity of artinian modules, it also focuses on recent advanced results on these matters.
The influence of different gomomorphic images on the structure of a group is one of the most important and natural problems of group theory. The problem of describing a group with all its gomomorphic images known, i.e. reconstructing the whole thing using its reflections, seems especially natural and promising. This theme has a history that is almost a half-century long. The authors of this book present well-established results as well as newer, contemporary achievements in this area from the common integral point of view. This view is based on the implementation of module theory for solving group problems. Evidently, this approach requires investigation of some specific types of modules: infinite simple modules and just infinite modules (note that every infinite noetherian module has either an infinite simple factor-module or a just infinite factor-module). This book will therefore be useful for group theorists as well as ring and module theorists. Also, the level, style, and presentation make the book easily accessible to graduate students.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.