This book presents the general theory and basic methods of linear and nonlinear stochastic systems (StS) i.e. dynamical systems described by stochastic finite- and infinite-dimensional differential, integral, integrodifferential, difference etc equations. The general StS theory is based on the equations for characteristic functions and functionals. The book outlines StS structural theory, including direct numerical methods, methods of normalization, equivalent linearization and parametrization of one- and multi-dimensional distributions, based on moments, quasimoments, semi-invariants and orthogonal expansions. Special attention is paid to methods based on canonical expansions and integral canonical representations. About 500 exercises and problems are provided. The authors also consider applications in mathematics and mechanics, physics and biology, control and information processing, operations research and finance.
This book is intended for those having only a moderate background in mathematics, who need to increase their mathematical knowledge for development in their areas of work and to read the related mathematical literature. The material covered, which includes practically all the information on functional analysis that may be necessary for those working in various areas of applications of mathematics, as well as the simplicity of presentation, differentiates this book from others. About 300 examples and more than 500 problems are provided to help readers understand and master the theories presented. The list of references enables readers to explore those topics in which they are interested, and gather further information about applications used as examples in the book. Applications: Probability Theory and Statistics, Signal and Image Processing, Systems Analysis and Design.
This book presents a methodology for assessing environmental safety in civil aviation. The methodology allows the comparison of different technological processes and evaluates their impact on the environment. At the same time, the medical and demographic indicators for ecologically unfavorable territories are compared with similar indicators in the control (background) territories in the same climatic and geographical zones. This book contains methodological recommendations for the creation of the system for ecology safety in the organizational structures of civil aviation. This book is useful to a wide audience—students of aviation, lecturers, as well as specialists in the field of ecology and those involved in ensuring the necessary ecology requirements at aviation enterprises.
This book is intended for those having only a moderate background in mathematics, who need to increase their mathematical knowledge for development in their areas of work and to read the related mathematical literature. The material covered, which includes practically all the information on functional analysis that may be necessary for those working in various areas of applications of mathematics, as well as the simplicity of presentation, differentiates this book from others. About 300 examples and more than 500 problems are provided to help readers understand and master the theories presented. The list of references enables readers to explore those topics in which they are interested, and gather further information about applications used as examples in the book.Applications: Probability Theory and Statistics, Signal and Image Processing, Systems Analysis and Design.
Thermophysical Properties of Individual Hydrocarbons of Petroleum and Natural Gases: Properties, Methods, and Low-Carbon Technologies is a go-to data source for engineers who need derive property data on everyday components. Providing more precise data improves existing oil and gas processing systems and creates opportunities for more sustainable operations and equipment, such as hydrogen and carbon capture. Covering modern equations of state, this source discusses detailed descriptions of experimental apparatus, methods of measurement, corrections and error estimates as well as results of previous experiments. Generalized predictive methods for calculating viscosity and thermal conductivity are also covered. Rounding out with property databases and lower-carbon technology advances, the book gives today's engineers a detailed study of methods for more sustainable experimental research of thermophysical properties. - Teaches approaches for the measurement and modeling of thermophysical properties for future sustainability growth, including hydrogen and carbon capture - Provides exact property data of natural gas and their main components, including saturated properties - Gives readers new knowledge in experimental measurement procedures and guidelines for calculating thermophysical properties, along with updates on applications
This graduate textbook covers contemporary directions of non-equilibrium statistical mechanics as well as classical methods of kinetics. With one of the main propositions being to avoid terms such as ""obviously"" and ""it is easy to show"", this treatise is an easy-to-read introduction into this traditional, yet vibrant field
The book is devoted to the physics of plasma at high density, which has been compressed so strongly that the effects of interparticle interactions and non-ideality govern its behavior. Interest in this non-traditional plasma has been generated in recent years when states of matter with high concentration of energy became accessible experimentally as the basis of modern technologies and facilities. The greatest part of the matter in the Universe is in this exotic state. In this book, the methods of generation and diagnostics of strongly coupled plasmas are presented, along with the main theoretical methods and experimental results on thermodynamical, kinetic and optical properties. Particular attention is given to fast developing modern directions of strongly coupled plasma physics such as metallization of dielectrics and dielectrization of metals, non-neutral plasmas, dusty plasmas and their crystallization. The book is written for physicists and astrophysicists, engineers, and material scientists.
This book presents the general theory and basic methods of linear and nonlinear stochastic systems (StS) i.e. dynamical systems described by stochastic finite- and infinite-dimensional differential, integral, integrodifferential, difference etc equations. The general StS theory is based on the equations for characteristic functions and functionals. The book outlines StS structural theory, including direct numerical methods, methods of normalization, equivalent linearization and parametrization of one- and multi-dimensional distributions, based on moments, quasimoments, semi-invariants and orthogonal expansions. Special attention is paid to methods based on canonical expansions and integral canonical representations. About 500 exercises and problems are provided. The authors also consider applications in mathematics and mechanics, physics and biology, control and information processing, operations research and finance.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.