Near to one billion people call slums their home, making it a reasonable claim to describe our world as a 'planet of slums.' But how has this hard and unyielding way of life been depicted on screen? How have filmmakers engaged historically and across the globe with the social conditions of what is often perceived as the world's most miserable habitats?Combining approaches from cultural, globalisation and film studies, Igor Krstic outlines a transnational history of films that either document or fictionalise the favelas, shantytowns, barrios poulares or chawls of our 'planet of slums', exploring the way accelerated urbanisation has intersected with an increasingly interconnected global film culture. From Jacob Riis' How The Other Half Lives (1890) to Danny Boyle's Slumdog Millionaire (2008), the volume provides a number of close readings of films from different historical periods and regions to outline how contemporary film and media practices relate to their past predeccesors, demonstrating the way various filmmakers, both north and south of the equator, have repeatedly grappled with, rejected or continuously modified documentary and realist modes to convey life in our 'planet of slums'.
This book, as the fourth volume, continues on ultra-high temperature materials with melting (sublimation or decomposition) points around or over 2500 °C. In this quality the book has over-branched cross-links with the sections and tables of the previous Volumes I-III. Similarly to Volumes I-III, the book includes a thorough treatment of the physical and chemical properties of ultra-high temperature materials, namely such as W semi- and monocarbides, and continues the description of refractory carbides, which was begun from Volume II of the series. The book will be of interest to researchers, engineers, postgraduate, graduate and undergraduate students alike. The readers are provided with the full qualitative and quantitative assessment, which is based on the latest updates in the field of fundamental physics and chemistry, nanotechnology, materials science, design and engineering.
Distributed-order differential equations, a generalization of fractional calculus, are of increasing importance in many fields of science and engineering from the behaviour of complex dielectric media to the modelling of nonlinear systems. This Brief will broaden the toolbox available to researchers interested in modeling, analysis, control and filtering. It contains contextual material outlining the progression from integer-order, through fractional-order to distributed-order systems. Stability issues are addressed with graphical and numerical results highlighting the fundamental differences between constant-, integer-, and distributed-order treatments. The power of the distributed-order model is demonstrated with work on the stability of noncommensurate-order linear time-invariant systems. Generic applications of the distributed-order operator follow: signal processing and viscoelastic damping of a mass–spring set up. A new general approach to discretization of distributed-order derivatives and integrals is described. The Brief is rounded out with a consideration of likely future research and applications and with a number of MATLAB® codes to reduce repetitive coding tasks and encourage new workers in distributed-order systems.
This monograph presents a simple and efficient two-relay control algorithm for generation of self-excited oscillations of a desired amplitude and frequency in dynamic systems. Developed by the authors, the two-relay controller consists of two relays switched by the feedback received from a linear or nonlinear system, and represents a new approach to the self-generation of periodic motions in underactuated mechanical systems. The first part of the book explains the design procedures for two-relay control using three different methodologies – the describing-function method, Poincaré maps, and the locus-of-a perturbed-relay-system method – and concludes with stability analysis of designed periodic oscillations. Two methods to ensure the robustness of two-relay control algorithms are explored in the second part, one based on the combination of the high-order sliding mode controller and backstepping, and the other on higher-order sliding-modes-based reconstruction of uncertainties and their compensation where Lyapunov-based stability analysis of tracking error is used. Finally, the third part illustrates applications of self-oscillation generation by a two-relay control with a Furuta pendulum, wheel pendulum, 3-DOF underactuated robot, 3-DOF laboratory helicopter, and fixed-phase electronic circuits. Self-Oscillations in Dynamic Systems will appeal to engineers, researchers, and graduate students working on the tracking and self-generation of periodic motion of electromechanical systems, including non-minimum-phase systems. It will also be of interest to mathematicians working on analysis of periodic solutions.
While the classic model checking problem is to decide whether a finite system satisfies a specification, the goal of parameterized model checking is to decide, given finite systems (n) parameterized by n ∈ N, whether, for all n ∈ N, the system (n) satisfies a specification. In this book we consider the important case of (n) being a concurrent system, where the number of replicated processes depends on the parameter n but each process is independent of n. Examples are cache coherence protocols, networks of finite-state agents, and systems that solve mutual exclusion or scheduling problems. Further examples are abstractions of systems, where the processes of the original systems actually depend on the parameter. The literature in this area has studied a wealth of computational models based on a variety of synchronization and communication primitives, including token passing, broadcast, and guarded transitions. Often, different terminology is used in the literature, and results are based on implicit assumptions. In this book, we introduce a computational model that unites the central synchronization and communication primitives of many models, and unveils hidden assumptions from the literature. We survey existing decidability and undecidability results, and give a systematic view of the basic problems in this exciting research area.
Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials describes physical, optical and spectroscopic properties of the emerging class of nanocomposites formed from carbon nanotubes (CNTs) interfacing with organic and inorganic materials. The three main chapters detail novel trends in photophysics related to the interaction of light with various carbon nanotube composites from relatively simple CNT/small molecule assemblies to complex hybrids such as CNT/Si and CNT/DNA nanostructures. The latest experimental results are followed up with detailed discussions and scientific and technological perspectives to provide a through coverage of major topics including: -Light harvesting, energy conversion, photoinduced charge separation and transport in CNT based nanohybrids -CNT/polymer composites exhibiting photoactuation; and -Optical spectroscopy and structure of CNT/DNA complexes. Including original data and a short review of recent research, Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials makes this emerging field of photophysics and its applications available to academics and professionals working with carbon nanotube composites in fundamental and applied fields
Near to one billion people call slums their home, making it a reasonable claim to describe our world as a 'planet of slums.' But how has this hard and unyielding way of life been depicted on screen? How have filmmakers engaged historically and across the globe with the social conditions of what is often perceived as the world's most miserable habitats?Combining approaches from cultural, globalisation and film studies, Igor Krstic outlines a transnational history of films that either document or fictionalise the favelas, shantytowns, barrios poulares or chawls of our 'planet of slums', exploring the way accelerated urbanisation has intersected with an increasingly interconnected global film culture. From Jacob Riis' How The Other Half Lives (1890) to Danny Boyle's Slumdog Millionaire (2008), the volume provides a number of close readings of films from different historical periods and regions to outline how contemporary film and media practices relate to their past predeccesors, demonstrating the way various filmmakers, both north and south of the equator, have repeatedly grappled with, rejected or continuously modified documentary and realist modes to convey life in our 'planet of slums'.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.