In this monograph, a statistical description of natural phenomena is used to develop an information processing system capable of modeling non-linear relationships between sensory data. The system, based on self-organized, optimal preservation of empirical information, applies these relationships for prediction and adaptive control. This monograph is written for students, scientists and engineers in academia and industry who are interested in experimental work related to the adaptive modeling of natural laws, the development of sensory-neural networks, intelligent control, synergetics and informatics. No specific knowledge of advanced mathematics is presupposed. Examples taken from physics, engineering, medicine and economics demonstrate the applicability of such intelligent systems.
This book covers developments in the theory of oscillations from diverse viewpoints, reflecting the fields multidisciplinary nature. It introduces the state-of-the-art in the theory and various applications of nonlinear dynamics. It also offers the first treatment of the asymptotic and homogenization methods in the theory of oscillations in combination with Pad approximations. With its wealth of interesting examples, this book will prove useful as an introduction to the field for novices and as a reference for specialists.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.