Theory of Arched Structures: Strength, Stability, Vibration presents detailed procedures for analytical analysis of the strength, stability, and vibration of arched structures of different types, using exact analytical methods of classical structural analysis. The material discussed is divided into four parts. Part I covers stress and strain with a particular emphasis on analysis; Part II discusses stability and gives an in-depth analysis of elastic stability of arches and the role that matrix methods play in the stability of the arches; Part III presents a comprehensive tutorial on dynamics and free vibration of arches, and forced vibration of arches; and Part IV offers a section on special topics which contains a unique discussion of plastic analysis of arches and the optimal design of arches..
This revised and significantly expanded edition contains a rigorous examination of key concepts, new chapters and discussions within existing chapters, and added reference materials in the appendix, while retaining its classroom-tested approach to helping readers navigate through the deep ideas, vast collection of the fundamental methods of structural analysis. The authors show how to undertake the numerous analytical methods used in structural analysis by focusing on the principal concepts, detailed procedures and results, as well as taking into account the advantages and disadvantages of each method and sphere of their effective application. The end result is a guide to mastering the many intricacies of the range of methods of structural analysis. The book differentiates itself by focusing on extended analysis of beams, plane and spatial trusses, frames, arches, cables and combined structures; extensive application of influence lines for analysis of structures; simple and effective procedures for computation of deflections; introduction to plastic analysis, stability, and free and forced vibration analysis, as well as some special topics. Ten years ago, Professor Igor A. Karnovsky and Olga Lebed crafted a must-read book. Now fully updated, expanded, and titled Advanced Methods of Structural Analysis (Strength, Stability, Vibration), the book is ideal for instructors, civil and structural engineers, as well as researches and graduate and post graduate students with an interest in perfecting structural analysis.
This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans.“p> Numerous examples, which illustrate the theoretical ideas of each chapter, are included. This book is intended for graduate students and engineers. It is assumed that a reader has working knowledge of theory of vibrations, differential equations, andcomplex analysis. About the Authors. Igor A Karnovsky, Ph.D., Dr. Sci., is a specialist in structural analysis, theory of vibration and optimal control of vibration. He has 40 years of experience in research, teaching and consulting in this field, and is the author of more than 70 published scientific papers, including two books in Structural Analysis (published with Springer in 2010-2012) and three handbooks in Structural Dynamics (published with McGraw Hill in 2001-2004). He also holds a number of vibration-control-related patents. Evgeniy Lebed, Ph.D., is a specialist in applied mathematics and engineering. He has 10 years of experience in research, teaching and consulting in this field. The main sphere of his research interests are qualitative theory of differential equations, integral transforms and frequency-domain analysis with application to image and signal processing. He is the author of 15 published scientific papers and a US patent (2015).
The chemical properties of superoxide ion, its biological role, and the role of other oxygen radicals which arise as a result of its transformations are contained in this text. In Volume I the principal reactions of superoxide ion, including protonation reactions with proton donors, nucleophilic reactions with esters, alkyl halides and other compounds, electron transfer reactions with quinones and metal complexes, are described. Basic quantitative data including rate constants and yields for the reactions of superoxide ion of all types are given in tables. This volumecontains the mechanisms of the generation of oxygen radicals in cells and the interaction of superoxide ion with cell components. The role of superoxide ion in lipid peroxidation and destruction of proteins and nucleic acids is explained, as well as oxygen radicals in the mechanisms of toxic and therapeutic action of drugs, especially anticancer antibiotics. In addition, the action of superoxide ion and other oxygen radicals on plants, micro-, and macroorganisms is discussed, along with the role of oxygen radicals in normal metabolic and pathological processes.
The chemical properties of superoxide ion, its biological role, and the role of other oxygen radicals which arise as a result of its transformations are contained in this text. In Volume I the principal reactions of superoxide ion, including protonation reactions with proton donors, nucleophilic reactions with esters, alkyl halides and other compounds, electron transfer reactions with quinones and metal complexes, are described.
Providing a comprehensive review of reactions of oxidation for different classes of organic compounds and polymers, and biological processes mediated by free radicals, Oxidation and Antioxidants in Organic Chemistry and Biology puts the data and bibliographical information you need into one easy-to-use resource. You will find up-to-date information
From basic science to clinical care, to epidemiological disease patters, The Neurology of AIDS is the only complete textbook available on AIDS neurology and the only one comprehensive enough to stand alone in each segment of study in brain disorders affected by the human immunodeficiency virus. It is an indispensable resource for students, resident physicians, practicing physicians, and for researchers and experts in the HIV/AIDS field. Oxford Clinical Neuroscience is a comprehensive, cross-searchable collection of resources offering quick and easy access to eleven of Oxford University Press's prestigious neuroscience texts. Joining Oxford Medicine Online these resources offer students, specialists and clinical researchers the best quality content in an easy-to-access format.
Advanced Methods of Structural Analysis aims to help its readers navigate through the vast field of structural analysis. The book aims to help its readers master the numerous methods used in structural analysis by focusing on the principal concepts, as well as the advantages and disadvantages of each method. The end result is a guide to mastering the many intricacies of the plethora of methods of structural analysis. The book differentiates itself from other volumes in the field by focusing on the following: • Extended analysis of beams, trusses, frames, arches and cables • Extensive application of influence lines for analysis of structures • Simple and effective procedures for computation of deflections • Introduction to plastic analysis, stability, and free vibration analysis Authors Igor A. Karnovsky and Olga Lebed have crafted a must-read book for civil and structural engineers, as well as researches and students with an interest in perfecting structural analysis. Advanced Methods of Structural Analysis also offers numerous example problems, accompanied by detailed solutions and discussion of the results.
* This information-rich reference book provides solutions to the architectural problem of vibrations in beams, arches and frames in bridges, highways, buildings and tunnels * A must-have for structural designers and civil engineers, especially those involved in the seismic design of buildings * Well-organized into problem-specific chapters, and loaded with detailed charts, graphs, and necessary formulas
Theory of Arched Structures: Strength, Stability, Vibration presents detailed procedures for analytical analysis of the strength, stability, and vibration of arched structures of different types, using exact analytical methods of classical structural analysis. The material discussed is divided into four parts. Part I covers stress and strain with a particular emphasis on analysis; Part II discusses stability and gives an in-depth analysis of elastic stability of arches and the role that matrix methods play in the stability of the arches; Part III presents a comprehensive tutorial on dynamics and free vibration of arches, and forced vibration of arches; and Part IV offers a section on special topics which contains a unique discussion of plastic analysis of arches and the optimal design of arches..
This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans.“p> Numerous examples, which illustrate the theoretical ideas of each chapter, are included. This book is intended for graduate students and engineers. It is assumed that a reader has working knowledge of theory of vibrations, differential equations, andcomplex analysis. About the Authors. Igor A Karnovsky, Ph.D., Dr. Sci., is a specialist in structural analysis, theory of vibration and optimal control of vibration. He has 40 years of experience in research, teaching and consulting in this field, and is the author of more than 70 published scientific papers, including two books in Structural Analysis (published with Springer in 2010-2012) and three handbooks in Structural Dynamics (published with McGraw Hill in 2001-2004). He also holds a number of vibration-control-related patents. Evgeniy Lebed, Ph.D., is a specialist in applied mathematics and engineering. He has 10 years of experience in research, teaching and consulting in this field. The main sphere of his research interests are qualitative theory of differential equations, integral transforms and frequency-domain analysis with application to image and signal processing. He is the author of 15 published scientific papers and a US patent (2015).
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.