Recent and radically improved machining processes, from high wheel speeds to nanotechnology, have turned a spotlight on abrasive machining processes as a fertile area for further advancements. Written for researchers, students, engineers and technicians in manufacturing, this book presents a fundamental rethinking of important tribological elements of abrasive machining processes and their effects on process efficiency and product quality. Newer processes such as chemical mechanical polishing (CMP) and silicon wafer dicing can be better understood as tribological processes. Understanding the tribological principles of abrasive processes is crucial to discovering improvements in accuracy, production rate, and surface quality of products spanning all industries, from machine parts to ball bearings to contact lens to semiconductors.
Focusing on the machining of ceramic materials such as silicon nitride, silicon carbide, and zirconia, this handbook meets the growing need in industry for a clear understanding of modern improvements in ceramic processing. The presentation is international in scope, with techniques and information represented from the USA, Japan, Germany, and the United Kingdomùcountries that have made important contributions to the field. The 20 expert chapter authors explore the challenge of reducing the costs of machining operations, a continuing problem in an industry where ceramic parts must be machined into final form to achieve a proper fit. The handbook reveals that the abrasive machining of ceramic materials will always be a requirement because of the difficulty of controlling parts dimensions at the high temperatures required in their creation. The contributors then explain the properties and characteristics of ceramics, the various types of abrasive processes, and typical tests used in the procedures. An entire section of the handbook concerns grinding tools, their conditioning, lubrication, and cooling, checking for wear on the tools, and using them efficiently. The book also examines modern honing and superfinishing tools and machines, and describes advances in the technology, as well as lapping and polishing techniques using chemical compounds and ultrasound.Ceramics is a field where more advanced products are sure to appear. Many of the products will require advanced, better-controlled processing technologies; vastly improved productivity in manufacturing; and increased product reliability. The contributors to this Handbook will assist readers in the attainment of these important goals.
Recent and radically improved machining processes, from high wheel speeds to nanotechnology, have turned a spotlight on abrasive machining processes as a fertile area for further advancements. Written for researchers, students, engineers and technicians in manufacturing, this book presents a fundamental rethinking of important tribological elements of abrasive machining processes and their effects on process efficiency and product quality. Newer processes such as chemical mechanical polishing (CMP) and silicon wafer dicing can be better understood as tribological processes. Understanding the tribological principles of abrasive processes is crucial to discovering improvements in accuracy, production rate, and surface quality of products spanning all industries, from machine parts to ball bearings to contact lens to semiconductors.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.