Nanostructured materials with tailored properties are regarded as a fundamental element in the development of future science and technology. Research is still ongoing into the nanosized construction elements required to create functional solids. The recently developed technique, nanocasting, has great advantage over others in terms of the synthesis of special nanostructured materials by the careful choice of suitable elements and nanoengineering steps. This new book summarizes the recent developments in nanocasting, including the principles of nanocasting, syntheses of novel nanostructured materials, characterization methods, detailed synthetic recipes and further possible development in this area. The book focuses on the synthesis of porous solids from the viewpoint of methodology and introduces the science of nanocasting from fundamental principles to their use in synthesis of various materials. It starts by outlining the principles of nanocasting, requirements to the templates and precursors and the tools needed to probe matter at the nanoscale level. It describes how to synthesize nano structured porous solids with defined characteristics and finally discusses the functionalization and application of porous solids. Special attention is given to new developments in this field and future perspectives. A useful appendix covering the detailed synthetic recipes of various templates including porous silica, porous carbon and colloidal spheres is included which will be invaluable to researchers wanting to follow and reproduce nanocast materials. Topics covered in the book include: * inorganic chemistry * organic chemistry * solution chemistry * sol-gel and interface science * acid-base equilibria * electrochemistry * biochemistry * confined synthesis The book gives readers not only an overview of nanocasting technology, but also sufficient information and knowledge for those wanting to prepare various nanostructured materials without needing to search the available literature.
The atomic force microscope (AFM) has been successfully used to perform nanorobotic manipulation operations on nanoscale entities such as particles, nanotubes, nanowires, nanocrystals, and DNA since 1990s. There have been many progress on modeling, imaging, teleoperated or automated control, human-machine interfacing, instrumentation, and applications of AFM based nanorobotic manipulation systems in literature. This book aims to include all of such state-of-the-art progress in an organized, structured, and detailed manner as a reference book and also potentially a textbook in nanorobotics and any other nanoscale dynamics, systems and controls related research and education. Clearly written and well-organized, this text introduces designs and prototypes of the nanorobotic systems in detail with innovative principles of three-dimensional manipulation force microscopy and parallel imaging/manipulation force microscopy.
Novel Electrochemical Energy Storage Devices Explore the latest developments in electrochemical energy storage device technology In Novel Electrochemical Energy Storage Devices, an accomplished team of authors delivers a thorough examination of the latest developments in the electrode and cell configurations of lithium-ion batteries and electrochemical capacitors. Several kinds of newly developed devices are introduced, with information about their theoretical bases, materials, fabrication technologies, design considerations, and implementation presented. You’ll learn about the current challenges facing the industry, future research trends likely to capture the imaginations of researchers and professionals working in industry and academia, and still-available opportunities in this fast-moving area. You’ll discover a wide range of new concepts, materials, and technologies that have been developed over the past few decades to advance the technologies of lithium‐ion batteries, electrochemical capacitors, and intelligent devices. Finally, you’ll find solutions to basic research challenges and the technologies applicable to energy storage industries. Readers will also benefit from the inclusion of: A thorough introduction to energy conversion and storage, and the history and classification of electrochemical energy storage An exploration of materials and fabrication of electrochemical energy storage devices, including categories, EDLCSs, pseudocapacitors, and hybrid capacitors A practical discussion of the theory and characterizations of flexible cells, including their mechanical properties and the limits of conventional architectures A concise treatment of the materials and fabrication technologies involved in the manufacture of flexible cells Perfect for materials scientists, electrochemists, and solid-state chemists, Novel Electrochemical Energy Storage Devices will also earn a place in the libraries of applied physicists, and engineers in power technology and the electrotechnical industry seeking a one-stop reference for portable and smart electrochemical energy storage devices.
Cyclospora cayetanensis is a microscopic parasite that can be transmitted via food or water sources and causes intestinal disease (Cyclosporiasis) in humans. Cyclospora and Cyclosporiasis: Epidemiology, Diagnosis, Detection, and Control reviews 22 species of Cyclospora and discusses C. cayetanensis infection in humans. This book offers comprehensive coverage that includes taxonomy and biology, molecular characteristics, and transmission of the parasite. It also provides researchers, clinicians, public health officials, and food safety officials with basic data for the epidemiology of the Cyclospora spp. or C. cayetanensis, as well as strategies to monitor large-scale outbreaks of Cyclospora spp. or C. cayetanensis. The book further covers clinical symptoms, diagnostic methods, and means of treatment and prevention of this disease and informs readers of the hazards of the parasite, common means of transmission, and self-protection measures. - Provides the taxonomy of 22 species of Cyclospora (including two newly identified Cyclospora species) - Covers the scenarios and characteristics of recent epidemics in the world, susceptible populations, and the risk factors in the transmission of the C. cayetanensis - Summarizes recent developments in detection methods of Cyclospora spp. or C. cayetanensis in humans, animals, and the environment
This book highlights the origin of low external quantum efficiency for deep ultraviolet light-emitting diodes (DUV LEDs). In addition, it puts forward solutions for increasing the internal quantum efficiency and the light extraction efficiency of DUV LEDs. The book chiefly concentrates on approaches that can be used to improve the crystalline quality, increase carrier injection, reduce the polarization-induced electric field within multiple quantum wells, suppress the TM polarization emission, and enhance the light escape from the semiconductor layer. It also demonstrates insightful device physics for DUV LEDs, which will greatly benefit the optoelectronic community.
This book introduces the latest research developments in composite nanomaterials and summarizes the fundamentals and technical approaches in synthesis, fabrication and processing of composite nanomaterials. The author describes the intrinsic relationship between the catalytic properties and the physical and chemical effects in the composite materials, providing for theoretical and technical bases for effectively developing novel electrocatalyst - applications of the nanocomposites in energy conversion areas.
This book aims to provide fundamental knowledge and information for research in molecular systematics on parasitic helminths (nematode, trematode, cestode). The shreds of evidence of molecular systematics studies will be compiled and discussed in terms of the utilities and pitfalls of the genetic marker used for various purposes, which have been implemented for molecular systematics of parasitic nematodes, cestodes, and trematodes. Moreover, this book will also provide the procedure for research on molecular systematics and DNA taxonomy as the guideline to explore parasitic helminths. Finally, the further perspectives of utilizing genetic markers for molecular studies on parasitic helminths will be addressed in the context of applications from the laboratory to fieldwork such as DNA barcoding and environmental DNA metabarcoding of parasitic helminths. The book will benefit postgraduate students and researchers requiring the detailed knowledge of molecular systematics, as well as researchers desiring a guideline to select genetic markers and analyze DNA sequences to make phylogenetic inferences
An important and timely guide to the progress being made on constrained helical peptides Constraint helical peptides have emerged as a solution to target previously undruggable protein-protein interactions, which feature large and complex surfaces. Cyclized Helical Peptides: Synthesis, Properties and Therapeutic Applications offers a review of the most current methodologies of constructing constrained helices. The authors noted experts on the topic include the information on the fundamental features of cyclized helical peptides and discuss their limitations. The book summarizes and explores the effects of chemical methods constructing helical peptides on helicity, binding affinity, cell penetration, and nonspecific toxicity. The book examines the therapeutic applications of the constraint helices and includes comparison with existing small molecule modulators or antibodies. Designed as a useful resource for both those outside and inside the field. Those new to the field will find a comprehensive introduction to cyclized helical peptide and those inside the field will find a deeper understanding of the topic. This important book: Offers a practical introduction to constrained helical peptides Includes all aspects of constrained helical peptides Includes information on the most recent methods that have emerged Presents a guide to help solve practical problems in the field Written for academics, pharmaceutical professional, Cyclized Helical Peptides is a comprehensive guide to the developments of constrained helical peptides.
Vehicular Platoon System Design: Fundamentals and Robustness provides a comprehensive introduction to connected and automated vehicular platoon system design. Platoons decrease the distances between cars or trucks using electronic, and possibly mechanical, coupling. This capability allows many cars or trucks to accelerate or brake simultaneously. It also allows for a closer headway between vehicles by eliminating reacting distance needed for human reaction. The book considers the key issues of robustness and cybersecurity, with optimization-based model predictive control schemes applied to control vehicle platoon.In the controller design part, several practical problems, such as constraint handling, optimal control performance, robustness against disturbance, and resilience against cyberattacks are reviewed. In addition, the book provides detailed theoretical analysis of the stability of the platoon under different control schemes. - Provides a comprehensive introduction to the state-of-the-art development of connected and automated vehicular platoon systems - Covers the advanced, robust and stochastic model predictive control algorithm design methods for constraint handling and robustness improvement - Introduces rigorous theoretical stability analysis from the robust tube-based distributedMPC (Model Predictive Control) and stochastic tube-based distributed MPC perspectives - Offers various filter-based inter-vehicle attack detection methods and event-based resilient vehicle platoon control design methods
Sensor networks have many interesting applications with great utility; however, their actually deployment and realization rely on continuous innovations and solutions to many challenging problems. Thus, sensor networks have recently attracted the attention of many researchers and practitioners. The compilation of the Handbook on Sensor Networks will meet the demand of the sensor network community for a comprehensive reference and summary of the current state of the area. The Handbook on Sensor Networks is a collection of approximately 40 chapters on sensor network theory and applications. The book spans a wide spectrum and includes topics in medium access control, routing, security and privacy, coverage and connectivity, modeling and simulations, multimedia, energy efficiency, localization and tracking, design and implementation, as well as sensor network applications.
An original advanced level reference appealing to both the microwave and antenna communities An overview of the research activity devoted to the synthesis of transmission lines by means of electrically small planar elements, highlighting the main microwave applications and the potential for circuit miniaturization Showcases the research of top experts in the field Presents innovative topics on synthesized transmission lines, which represent fundamental elements in microwave and mm-wave integrated circuits, including on-chip integration Covers topics that are related to the microwave community (transmission lines), and topics that are related to the antenna community (phased arrays), broadening the readership appeal
This atlas is dedicated specifically to gynecologic frozen section diagnosis and addresses professional practice gaps such as high diagnostic error rate, slow turnaround time, and inefficient communication between surgeons and pathologists at the time of intraoperative frozen section consultation of gynecologic specimens. The format of the volume is a combination of concise text and high quality gross and frozen section microscopic images, meticulously selected from the superb collection of pathology specimens of gynecologic tumors provided at Yale-New Haven Hospital in the past decades. Frequent entities with diagnostic pitfalls are balanced with less common lesions. Strategies to recognize their diagnostic features are emphasized, in addition to the impact on optimal surgical treatment of patients with gynecologic cancer. The indications, limitations, morphologic diagnostic criteria and pitfalls of frozen section consultation in gynecologic pathology are thoroughly reviewed with an ultimate goal of avoiding patient mismanagement in real-time. High quality frozen section microscopic illustrations aid the recognition of morphologic patterns and serve as quick reference during intraoperative consultation. Written by experts in the field, Atlas of Intraoperative Frozen Section Diagnosis in Gynecologic Pathology is a valuable resource for pathologists at all career/expertise levels who are involved in intraoperative consultation in their daily clinical practice.
This book describes the fundamental concepts, the latest developments and the outlook of the field of nanozymes (i.e., the catalytic nanomaterials with enzymatic characteristics). As one of today’s most exciting fields, nanozyme research lies at the interface of chemistry, biology, materials science and nanotechnology. Each of the book’s six chapters explores advances in nanozymes. Following an introduction to the rise of nanozymes research in the course of research on natural enzymes and artificial enzymes in Chapter 1, Chapters 2 through 5 discuss different nanomaterials used to mimic various natural enzymes, from carbon-based and metal-based nanomaterials to metal oxide-based nanomaterials and other nanomaterials. In each of these chapters, the nanomaterials’ enzyme mimetic activities, catalytic mechanisms and key applications are covered. In closing, Chapter 6 addresses the current challenges and outlines further directions for nanozymes. Presenting extensive information on nanozymes and supplemented with a wealth of color illustrations and tables, the book offers an ideal guide for readers from disparate areas, including analytical chemistry, materials science, nanoscience and nanotechnology, biomedical and clinical engineering, environmental science and engineering, green chemistry, and novel catalysis.
Vegetables are an important article of commerce both in developed and developing economies. Many studies point to importance of vegetables in our diet. Handbook of Vegetables and Vegetable Processing serves as a reference handbook on vegetables and vegetable processing containing the latest developments and advances in this fast growing field. The book can be considered as a companion to Y. H. Hui’s popular Handbook of Fruits and Fruit Processing (2006). Handbook of Vegetables and Vegetable Processing is contemporary in scope, with in-depth coverage of new interdisciplinary developments and practices in the field of vegetables emphasizing processing, preservation, packaging, and nutrition and food safety. Coverage includes chapters on the biology, horticultural biochemistry, microbiology, nutrient and bioactive properties of vegetables and their significant commercialization by the food industry worldwide. Full chapters are devoted to major vegetables describing aspects ranging from chemistry to processing and preservation. World-renowned editors and authors have contributed to this essential handbook on vegetables and their production, technology, storage, processing, packaging, safety and commercial product development. Special Features: Coverage includes biology and classification, physiology, biochemistry, flavor and sensory properties, microbial safety and HACCP principles, nutrient and bioactive properties In-depth descriptions of key processes including, minimal processing, freezing, pasteurization and aseptic processing, fermentation, drying, packaging, and application of new technologies Entire chapters devoted to important aspects of over 20 major commercial vegetables including avocado, table olives and textured vegetable proteins Unparalleled expertise on important topics from more than 50 respected authors
The authors of this book, all with a background in condensed matter physics, have carried out advanced researches in recent years to study the optical and magneto-optical properties of many kinds of new functional materials, including metal-based metamaterials, narrow-to-wide-bandgap semiconductors, thin films, and magnetic and magneto-optical materials by using different types of optical methods and instruments. This book describes some of the more recent progresses and developments in the study of condensed matter optics in both theoretic and experimental fields. It will help readers, especially graduate students and scientists who are studying and working in the nano-photonic field, to understand more deeply the characteristics of light waves propagated in nano-structure-based materials with potential applications in the future.
Recognizing rapidly ageing population is one key concern faced by cities and the challenge it would present to healthcare system, this book looks at ageing in China’s population as well as the delivery and financing of long-term care (LTC) in China. The book compares key features of long-term care insurance (LTCI) schemes in 15 pilot cities and evaluates the sustainability of various financing models adopted by the cities in the LTCI schemes. The book uses an interpretive case study approach to give an in-depth look into the LTC models in three pilot cities – Qingdao, Nantong, and Shanghai. The three cities represent three different models of financing and delivering LTC. To assess how effective the LTC models in these three cities are, the book uses five criteria, including utilization of medical resources, cost, equity, quality of care and sustainability. Also, the authors discuss how the financing and delivery of LTC can be improved in China, the impact of the 2019 coronavirus (COVID-19) pandemic on older adults in need of LTC in the country and the implications of China’s LTCI reform for other countries. The book will be a useful reference to scholars and policy-makers who look at urban ageing and healthcare costs and delivery.
This book proposes the novel network envisions and framework design principles, in order to systematically expound the next generation vehicular networks, including the modelling, algorithms and practical applications. It focuses on the key enabling technologies to design the next generation vehicular networks with various vehicular services to realize the safe, convenient and comfortable driving. The next generation vehicular networks has emerged to provide services with a high quality of experience (QoE) to vehicles, where both better network maintainability and sustainability can be obtained than before. The framework design principles and related network architecture are also covered in this book. Then, the series of research topics are discussed including the reputation based content centric delivery, the contract based mobile edge caching, the Stackelberg game model based computation offloading, the auction game based secure computation offloading, the bargain game based security protection and the deep learning based autonomous driving. Finally, the investigation, development and future works are also introduced for designing the next generation vehicular networks. The primary audience for this book are researchers, who work in computer science and electronic engineering. Professionals working in the field of mobile networks and communications, as well as engineers and technical staff who work on the development or the standard of computer networks will also find this book useful as a reference.
Low Dimensional Materials: Bridging the Fundamental Principles to Practice Applications provides an overview of research on low-dimensional materials, devices, and their applications. There are seven chapters in the book, starting from the basic quantum theory in chapter one, to the control and characterization of the unique structures (chapters two and four), to the relation of the physical and chemical properties with structures (chapter five), and to the practical and promising applications in energy, information, and health (chapter six), before conclusions and future outlook in chapter seven. - Discusses the whole field of low-dimensional materials, from quantum mechanics and low dimensional effects to structure-property relations, various methods of fabrication and assembly techniques, and a characterization of atomic and interface structures - Covers a wide range of topics, making it a 'map' for readers to understand the fundamentals of low-dimensional materials - Written with a 'bottom-up approach, with a solid foundation of quantum mechanics, thermodynamics, and energy transport in low-dimensional systems
Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.
Written by prominent scientists, this book is the first to specifically address the theory, techniques, and application of electron microscopy and associated techniques for nanotube research, a topic that is impacting a variety of fields, such as nanoelectronics, flat panel display, nanodevices, and novel instrumentation.
Wind Turbine Icing Physics and Anti-/De-Icing Technology gives a comprehensive update of research on the underlying physics pertinent to wind turbine icing and the development of various effective and robust anti-/de-icing technology for wind turbine icing mitigation. The book introduces the most recent research results derived from both laboratory studies and field experiments. Specifically, the research results based on field measurement campaigns to quantify the characteristics of the ice structures accreted over the blades surfaces of utility-scale wind turbines by using a Supervisory Control and Data Acquisition (SCADA) system and an Unmanned-Aerial-Vehicle (UAV) equipped with a high-resolution digital camera are also introduced. In addition, comprehensive lab experimental studies are explored, along with a suite of advanced flow diagnostic techniques, a detailed overview of the improvements, and the advantages and disadvantages of state-of-the-art ice mitigation strategies. This new addition to the Wind Energy Engineering series will be useful to all researchers and industry professionals who address icing issues through testing, research and industrial innovation. - Covers detailed improvements and the advantages/disadvantages of state-of-the-art ice mitigation strategies - Includes condition monitoring contents for lab-scale experiments and field tests - Presents the potential of various bio-inspired icephobic coatings of wind turbine blades
4th Party Cyber Logistics For Air Cargo is a technical discussion for researchers and practitioners to understand the issues, models, and future directions of air cargo logistics in the cyber era. This book introduces the many aspects of planning and control of air cargo logistics processes in an e-Business environment. The authors approach this subject matter from the perspective of the logistics service providers. There is tremendous potential of achieving industry-wide collaboration between agents of the air cargo industry via an e-Business community platform. At the same time, there are many intellectually challenging problems regarding the architecture, ownership, decision support environment, and knowledge management of such an e-Business platform. The authors provide an evolutionary view to conceptualize the developments of websites where e-Commerce activities and e-Business activities co-exist. Four Web eras are detailed, providing an impetus for the development of frameworks of an e-Business platform for air cargo logistics, or e-Platform. The conceptual framework captures the new elements in cyber logistics and what the framework can do for the industry.
Creation Immortal Emperor: Immortal Emperor Sky Tyrant has been dead for ten thousand years, no one can defeat him. With a single sword strike, Heaven and Earth will be destroyed. The Heavenly Emperor of Wei was extremely talented, his Eight Devils Mysterious Eyes overlooked the ancient river, and his killing power was the highest in the world. Meng Xuan, is killing them a small task? Meng Xuan: I can't say it was a small matter, right? That would seem too arrogant. Interesting, right? There were 3,000 great Daos, 100,000 Planets, and various types of Chosen vying for the Emperor's Road. ...
Magnetism is one of the basic properties of matter. Mankind has trav elled a long road in discovering and utilizing magnetism, and in this respect the ancient Chinese people have made outstanding contribu tions. In the book 'Lu's Spring and Autumn', written near the end of the Warring States Period, i. e. in the third century B. C. , there is a statement on the "attraction of iron by lodestones". So at that time it was known that magnets can attract ferromagnetic material. At the be ginning ofthe first century A. D. , viz. in the early years ofthe East Hang Dynasty, the famous scholar Wang Chong wrote in his masterpiece 'Len Hen' that the handle of a magnetic dipper pointed to the south. It was thus discovered at the time that magnets can point to the poles of the geomagnetic field. At the beginning of the twelfth century, during the reign of Emperor Hui of the Sung Dynasty, in the two books written by Zhu Yo and Xu Jin, respectively, there are descriptions of the com pass used in navigation. This tells us that the application of compasses was rather widespread at that time. The distinguished scientist Sen Go (1031-1085) discovered the declination of the terrestrial magnetic field. This is four hundred and more years earlier than its discovery by Christopher Columbus in 1492 during his voyage across the Atlantic Ocean. Such facts as these manifest the important contributions of ancient China to global civilization.
This book tackles the infodemic—the rapid, widespread diffusion of false, misleading, or inaccurate information about the disease and its ramifications—triggered by the COVID-19 pandemic. With a focus on four Asian societies, the book compares and analyzes the spread of COVID-19 misinformation and its broad impacts on the public in Beijing, Hong Kong, Taipei, and Singapore. Providing both a comprehensive overview of the phenomenon of misinformation and cross-societal analyses of patterns, the book features in-depth analyses of the prevalence of COVID-19 misinformation and engagement and explores its consequences in an Asian context. The book sheds lights on these key questions: What types of infodemic messages circulate widely on popular social media platforms? What factors account for exposure to and engagement with debunked yet popular COVID-19 misinformation? How does exposure to widely circulated COVID-19 misinformation affect people’s beliefs, attitudes, and adoption of preventive measures to cope with the pandemic? How do macro social differences condition the diffusion and impacts of COVID-19 misinformation? What intervention strategies can counter the misinformation? Presenting scientific insights and empirical findings on the pressing issues about infodemic, this book will be of great interest to students and researchers of communication studies, political science, public health, crisis communication, and Asian Studies, as well as policymakers and practitioners who wish to acquire cutting-edge, evidence-based knowledge about combating misinformation during a global pandemic.
Unmanned Driving Systems for Smart Trains explores the core technologies involved in unmanned driving systems for smart railways and trains, from foundational theory to the latest advances. The volume introduces the key technologies, research results and frontiers of the field. Each chapter includes practical cases to ground theory in practice. Seven chapters cover key aspects of unmanned driving systems for smart trains, including performance evaluation, algorithm-based reasoning and learning strategy, main control parameters, data mining and processing, energy saving optimization and control, and intelligent algorithm simulation platforms. This book will help researchers find solutions in developing better unmanned driving systems. - Responds to the expansion of smart railways and the adoption of unmanned global systems - Covers core technologies of unmanned driving systems for smart trains - Details a large number of case studies and experimental designs for unmanned railway systems - Adopts a multidisciplinary view where disciplines intersect at key points - Gives both foundational theory and the latest theoretical and practical advances for unmanned railways
Robot Systems for Rail Transit Applications presents the latest advances in robotics and artificial intelligence for railway systems, giving foundational principles and running through special problems in robot systems for rail transit. State-of-the art research in robotics and railway systems is presented alongside a series of real-world examples. Eight chapters give definitions and characteristics of rail transit robot systems, describe assembly and collaborative robots in manufacturing, introduce automated guided vehicles and autonomous rail rapid transit, demonstrate inspection robots, cover trench robots, and explain unmanned aerial vehicles. This book offers an integrated and highly-practical way to approach robotics and artificial intelligence in rail-transit. - Introduces robot and artificial intelligence (AI) systems for rail transit applications - Presents research alongside step-by-step coverage of real-world cases - Gives the theoretical foundations underlying practical application - Offers solutions for high-speed railways from the latest work in robotics - Shows how robotics and AI systems afford new and efficient methods in rail transit
This SpringerBrief focuses mainly on the basic theory and applications of massive MIMO in 5G networks. The significance of massive MIMO for 5G or future communications is first briefly discussed. Then, the basic theory of massive MIMO technology is comprehensively analyzed, i.e., a variety of 5G scenarios and their improvements are described when massive MIMO is taken into account. Art physical-layer techniques and various networking techniques for interference mitigation and resource scheduling are introduced as well. This SpringerBrief also examines the selected applications of massive MIMO in 5G networks, i.e., massive MIMO-aided millimeter communications and energy transfer. The physical-layer design, multiple access control (MAC) mechanism and networking techniques are discussed for millimeter-wave communications aided by massive MIMO technology. Then, massive MIMO is covered for hybrid information and energy transfer. A downlink precoder and a uplink pilot scheme is proposed for single cell networks, and both non-cooperative and cooperative energy transfer in multi-cell are presented. Communication researchers in the area of MIMO technology, as well as researchers and practitioners working in millimeter communications and energy transfer seeking new research topics, and topic areas with communication system design, centralized and distributed algorithms, will find this brief useful as a reference. Advanced-level students studying communication engineering will also find this book useful as a secondary text.
Focusing on non-intrusive load monitoring techniques in the area of smart grids and smart buildings, this book presents a thorough introduction to related basic principles, while also proposing improvements. As the basis of demand-side energy management, the non-intrusive load monitoring techniques are highly promising in terms of their energy-saving and carbon emission reduction potential. The book is structured clearly and written concisely. It introduces each aspect of these techniques with a number of examples, helping readers to understand and use the corresponding results. It provides latest strengths on the non-intrusive load monitoring techniques for engineers and managers of relevant departments. It also offers extensive information and a source of inspiration for researchers and students, while outlining future research directions.
This book belongs to the subject of control and systems theory. It studies a novel data-driven framework for the design and analysis of iterative learning control (ILC) for nonlinear discrete-time systems. A series of iterative dynamic linearization methods is discussed firstly to build a linear data mapping with respect of the system’s output and input between two consecutive iterations. On this basis, this work presents a series of data-driven ILC (DDILC) approaches with rigorous analysis. After that, this work also conducts significant extensions to the cases with incomplete data information, specified point tracking, higher order law, system constraint, nonrepetitive uncertainty, and event-triggered strategy to facilitate the real applications. The readers can learn the recent progress on DDILC for complex systems in practical applications. This book is intended for academic scholars, engineers, and graduate students who are interested in learning control, adaptive control, nonlinear systems, and related fields.
Edited by a highly regarded scientist and with contributions from sixteen international research groups, spanning Asia and North America, Rare Earth Coordination Chemistry: Fundamentals and Applications provides the first one-stop reference resource for important accomplishments in the area of rare earth. Consisting of two parts, Fundamentals and Applications, readers are armed with the systematic basic aspects of rare earth coordination chemistry and presented with the latest developments in the applications of rare earths. The systematic introduction of basic knowledge, application technology and the latest developments in the field, makes this ideal for readers across both introductory and specialist levels.
Focusing on inductive wireless power transfer (WPT), which relies on coil resonators and power converters, this book begins by providing the background and basic theories of WPT, which are essential for newcomers to the field. Then two major challenges of WPT – power transfer distance and efficiency – are subsequently addressed, and multi-resonator WPT systems, which not only offer a way to extend power transfer distance but also provide more flexibility, are investigated. Recent findings on techniques to maximize the power transfer efficiency of WPT systems, e.g. maximum efficiency point tracking, are also introduced. Without the constraint of cables, wireless power transfer (WPT) is an elegant technique for charging or powering a range of electrical devices, e.g. electric vehicles, mobile phones, artificial hearts, etc. Given its depth of coverage, the book can serve as a technical guideline or reference guide for engineers and researchers working on WPT.
Smart Metro Station Systems: Data Science and Engineering introduces key technologies in data science and engineering for smart metro station systems. The book consists of three main parts, focusing on the environment, people and energy. Each chapter includes practical applications, along with information on metro traffic flow monitoring and passenger guidance, methods for behavior analysis and trajectory projection, clustering and anomaly detection in crowd hotspots, monitoring and prediction for station humidity, monitoring and spatial prediction for air pollutants, time series feature extraction and analysis of metro load, characteristic and correlation analysis of metro load, and prediction and intelligent ventilation control. This volume offers a key reference on the emerging area of smart metro stations and will be useful to those working on smart railways, data science, engineering, artificial intelligence and aligned fields. - Presents relevant core technologies of data science and engineering in smart metro station systems - Describes systems based on holographic perception, terminal platform control and highly-autonomous operation - Gives a large number of practical case studies and experimental designs - Introduces state-of-the-art machine learning and data mining methods for smart metro station systems - Offers a comprehensive, up-to-date research solution for the emerging area of smart metro stations
The Resource Utilization of Plastic Waste with Supercritical Water Treatment discusses the types of plastic analysis, material characterization, technical principles of supercritical water treatment of waste plastics, the structure and process of the experimental platform, the selection of process parameters, and the establishment of kinetic models in professional areas of the field. - Provides a clear understanding of the basic principles and processes of supercritical water treatment of waste plastics technology - Enables the reader to develop a complete understanding of the experimental methods of supercritical water gasification plastics, liquefied plastics and collaborative treatments of pollutants - Provides an overview of kinetic models, along with the accuracy of modeling results by comparing with experimental results
In order to encourage a break from the rigors of purely architectural pursuits yet remain true to nurturing creativity and developing new technical skills, students were encouraged to "play" with notions of design and design technology in ARCH175. One of the projects for the course asked that students adopt the laser cutter in cutting, folding, and scoring from a single sheet of 11"x17" paper a representation of architecture or architectural education. ... Another component of the course was the comprehensive design of a toy. ...students not only explored the design of the toy itself, but also the use, marketing, packaging, and even disposal of their designs. ... The following projects document the output of students who engaged play within and without architectural context."--P. [3-4].
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.