This invaluable book presents reviews of some recent topics in the theory of Schrdinger operators. It includes a short introduction to the subject, a survey of the theory of the Schrdinger equation when the potential depends on the time periodically, an introduction to the so-called FBI transformation (also known as coherent state expansion) with application to the semi-classical limit of the S-matrix, an overview of inverse spectral and scattering problems, and a study of the ground state of the Pauli-Fierz model with the use of the functional integral. The material is accessible to graduate students and non-expert researchers.
The aim of this book is to provide basic knowledge of the inverse problems arising in various areas in mathematics, physics, engineering, and medical science. These practical problems boil down to the mathematical question in which one tries to recover the operator (coefficients) or the domain (manifolds) from spectral data. The characteristic properties of the operators in question are often reduced to those of Schrödinger operators. We start from the 1-dimensional theory to observe the main features of inverse spectral problems and then proceed to multi-dimensions. The first milestone is the Borg–Levinson theorem in the inverse Dirichlet problem in a bounded domain elucidating basic motivation of the inverse problem as well as the difference between 1-dimension and multi-dimension. The main theme is the inverse scattering, in which the spectral data is Heisenberg’s S-matrix defined through the observation of the asymptotic behavior at infinity of solutions. Significant progress has been made in the past 30 years by using the Faddeev–Green function or the complex geometrical optics solution by Sylvester and Uhlmann, which made it possible to reconstruct the potential from the S-matrix of one fixed energy. One can also prove the equivalence of the knowledge of S-matrix and that of the Dirichlet-to-Neumann map for boundary value problems in bounded domains. We apply this idea also to the Dirac equation, the Maxwell equation, and discrete Schrödinger operators on perturbed lattices. Our final topic is the boundary control method introduced by Belishev and Kurylev, which is for the moment the only systematic method for the reconstruction of the Riemannian metric from the boundary observation, which we apply to the inverse scattering on non-compact manifolds. We stress that this book focuses on the lucid exposition of these problems and mathematical backgrounds by explaining the basic knowledge of functional analysis and spectral theory, omitting the technical details in order to make the book accessible to graduate students as an introduction to partial differential equations (PDEs) and functional analysis.
How can one determine the physical properties of the medium or the geometrical properties of the domain by observing electromagnetic waves? To answer this fundamental problem in mathematics and physics, this book leads the reader to the frontier of inverse scattering theory for electromagnetism.The first three chapters, written comprehensively, can be used as a textbook for undergraduate students. Beginning with elementary vector calculus, this book provides fundamental results for wave equations and Helmholtz equations, and summarizes the potential theory. It also explains the cohomology theory in an easy and straightforward way, which is an essential part of electromagnetism related to geometry. It then describes the scattering theory for the Maxwell equation by the time-dependent method and also by the stationary method in a concise, but almost self-contained manner. Based on these preliminary results, the book proceeds to the inverse problem for the Maxwell equation.The chapters for the potential theory and elementary cohomology theory are good introduction to graduate students. The results in the last chapter on the inverse scattering for the medium and the determination of Betti numbers are new, and will give a current scope for the inverse spectral problem on non-compact manifolds. It will be useful for young researchers who are interested in this field and trying to find new problems.
Spectral properties for Schrödinger operators are a major concern in quantum mechanics both in physics and in mathematics. For the few-particle systems, we now have sufficient knowledge for two-body systems, although much less is known about N-body systems. The asymptotic completeness of time-dependent wave operators was proved in the 1980s and was a landmark in the study of the N-body problem. However, many problems are left open for the stationary N-particle equation. Due to the recent rapid development of computer power, it is now possible to compute the three-body scattering problem numerically, in which the stationary formulation of scattering is used. This means that the stationary theory for N-body Schrödinger operators remains an important problem of quantum mechanics. It is stressed here that for the three-body problem, we have a satisfactory stationary theory. This book is devoted to the mathematical aspects of the N-body problem from both the time-dependent and stationary viewpoints. The main themes are:(1) The Mourre theory for the resolvent of self-adjoint operators(2) Two-body Schrödinger operators—Time-dependent approach and stationary approach(3) Time-dependent approach to N-body Schrödinger operators(4) Eigenfunction expansion theory for three-body Schrödinger operatorsCompared with existing books for the many-body problem, the salient feature of this book consists in the stationary scattering theory (4). The eigenfunction expansion theorem is the physical basis of Schrödinger operators. Recently, it proved to be the basis of inverse problems of quantum scattering. This book provides necessary background information to understand the physical and mathematical basis of Schrödinger operators and standard knowledge for future development.
Proceedings of the Workshop on Spectral Theory of Differential Operators and Inverse Problems, October 28-November 1, 2002, Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan
Proceedings of the Workshop on Spectral Theory of Differential Operators and Inverse Problems, October 28-November 1, 2002, Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan
This volume grew out of a workshop on spectral theory of differential operators and inverse problems held at the Research Institute for Mathematical Sciences (Kyoto University). The gathering of nearly 100 participants at the conference suggests the increasing interest in this field of research. The focus of the book is on spectral theory for differential operators and related inverse problems. It includes selected topics from the following areas: electromagnetism, elasticity, the Schrodinger equation, differential geometry, and numerical analysis. The material is suitable for graduate students and researchers interested in inverse problems and their applications.
Over 500 buildings are presented, from 15th-century Buddhist temples to 20th-century cultural buildings, from venerable folkhouses to works by leading contemporary architects of Japan such as Kenzo Tange, Fumihiko Maki, Arata Isozaki, Hiroshi Hara, Toyo Ito and Riken Yamamoto as well as by foreign architects such as Norman Foster, Peter Eisenman and Steven Holl."--BOOK JACKET.
This book, Gastric Cancer - An Update, is a collection of reviewed and relevant research chapters, offering a comprehensive overview of recent developments in the field of gastric cancer. The book is comprised of single chapters authored by various researchers and it is edited by experts active in this field of study. All chapters are complete in itself but united under a common research topic. This publication aims at providing a thorough overview of the latest research efforts by international authors on gastric cancer, and opening new possible research paths for further novel developments.
The aim of this book is to provide basic knowledge of the inverse problems arising in various areas in mathematics, physics, engineering, and medical science. These practical problems boil down to the mathematical question in which one tries to recover the operator (coefficients) or the domain (manifolds) from spectral data. The characteristic properties of the operators in question are often reduced to those of Schrödinger operators. We start from the 1-dimensional theory to observe the main features of inverse spectral problems and then proceed to multi-dimensions. The first milestone is the Borg–Levinson theorem in the inverse Dirichlet problem in a bounded domain elucidating basic motivation of the inverse problem as well as the difference between 1-dimension and multi-dimension. The main theme is the inverse scattering, in which the spectral data is Heisenberg’s S-matrix defined through the observation of the asymptotic behavior at infinity of solutions. Significant progress has been made in the past 30 years by using the Faddeev–Green function or the complex geometrical optics solution by Sylvester and Uhlmann, which made it possible to reconstruct the potential from the S-matrix of one fixed energy. One can also prove the equivalence of the knowledge of S-matrix and that of the Dirichlet-to-Neumann map for boundary value problems in bounded domains. We apply this idea also to the Dirac equation, the Maxwell equation, and discrete Schrödinger operators on perturbed lattices. Our final topic is the boundary control method introduced by Belishev and Kurylev, which is for the moment the only systematic method for the reconstruction of the Riemannian metric from the boundary observation, which we apply to the inverse scattering on non-compact manifolds. We stress that this book focuses on the lucid exposition of these problems and mathematical backgrounds by explaining the basic knowledge of functional analysis and spectral theory, omitting the technical details in order to make the book accessible to graduate students as an introduction to partial differential equations (PDEs) and functional analysis.
How can one determine the physical properties of the medium or the geometrical properties of the domain by observing electromagnetic waves? To answer this fundamental problem in mathematics and physics, this book leads the reader to the frontier of inverse scattering theory for electromagnetism.The first three chapters, written comprehensively, can be used as a textbook for undergraduate students. Beginning with elementary vector calculus, this book provides fundamental results for wave equations and Helmholtz equations, and summarizes the potential theory. It also explains the cohomology theory in an easy and straightforward way, which is an essential part of electromagnetism related to geometry. It then describes the scattering theory for the Maxwell equation by the time-dependent method and also by the stationary method in a concise, but almost self-contained manner. Based on these preliminary results, the book proceeds to the inverse problem for the Maxwell equation.The chapters for the potential theory and elementary cohomology theory are good introduction to graduate students. The results in the last chapter on the inverse scattering for the medium and the determination of Betti numbers are new, and will give a current scope for the inverse spectral problem on non-compact manifolds. It will be useful for young researchers who are interested in this field and trying to find new problems.
Proceedings of the Workshop on Spectral Theory of Differential Operators and Inverse Problems, October 28-November 1, 2002, Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan
Proceedings of the Workshop on Spectral Theory of Differential Operators and Inverse Problems, October 28-November 1, 2002, Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan
This volume grew out of a workshop on spectral theory of differential operators and inverse problems held at the Research Institute for Mathematical Sciences (Kyoto University). The gathering of nearly 100 participants at the conference suggests the increasing interest in this field of research. The focus of the book is on spectral theory for differential operators and related inverse problems. It includes selected topics from the following areas: electromagnetism, elasticity, the Schrodinger equation, differential geometry, and numerical analysis. The material is suitable for graduate students and researchers interested in inverse problems and their applications.
Spectral properties for Schrödinger operators are a major concern in quantum mechanics both in physics and in mathematics. For the few-particle systems, we now have sufficient knowledge for two-body systems, although much less is known about N-body systems. The asymptotic completeness of time-dependent wave operators was proved in the 1980s and was a landmark in the study of the N-body problem. However, many problems are left open for the stationary N-particle equation. Due to the recent rapid development of computer power, it is now possible to compute the three-body scattering problem numerically, in which the stationary formulation of scattering is used. This means that the stationary theory for N-body Schrödinger operators remains an important problem of quantum mechanics. It is stressed here that for the three-body problem, we have a satisfactory stationary theory. This book is devoted to the mathematical aspects of the N-body problem from both the time-dependent and stationary viewpoints. The main themes are:(1) The Mourre theory for the resolvent of self-adjoint operators(2) Two-body Schrödinger operators—Time-dependent approach and stationary approach(3) Time-dependent approach to N-body Schrödinger operators(4) Eigenfunction expansion theory for three-body Schrödinger operatorsCompared with existing books for the many-body problem, the salient feature of this book consists in the stationary scattering theory (4). The eigenfunction expansion theorem is the physical basis of Schrödinger operators. Recently, it proved to be the basis of inverse problems of quantum scattering. This book provides necessary background information to understand the physical and mathematical basis of Schrödinger operators and standard knowledge for future development.
This invaluable book presents reviews of some recent topics in thetheory of SchrAdinger operators. It includes a short introduction tothe subject, a survey of the theory of the SchrAdinger equation whenthe potential depends on the time periodically, an introduction to theso-called FBI transformation (also known as coherent state expansion)with application to the semi-classical limit of the S-matrix, anoverview of inverse spectral and scattering problems, and a study ofthe ground state of the PauliOCoFierz model with the use of thefunctional integral. The material is accessible to graduate studentsand non-expert researchers.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.