To satisfy the higher requirements of digitally converged embedded systems, this book describes heterogeneous multicore technology that uses various kinds of low-power embedded processor cores on a single chip. With this technology, heterogeneous parallelism can be implemented on an SoC, and greater flexibility and superior performance per watt can then be achieved. This book defines the heterogeneous multicore architecture and explains in detail several embedded processor cores including CPU cores and special-purpose processor cores that achieve highly arithmetic-level parallelism. The authors developed three multicore chips (called RP-1, RP-2, and RP-X) according to the defined architecture with the introduced processor cores. The chip implementations, software environments, and applications running on the chips are also explained in the book. Provides readers an overview and practical discussion of heterogeneous multicore technologies from both a hardware and software point of view; Discusses a new, high-performance and energy efficient approach to designing SoCs for digitally converged, embedded systems; Covers hardware issues such as architecture and chip implementation, as well as software issues such as compilers, operating systems, and application programs; Describes three chips developed according to the defined heterogeneous multicore architecture, including chip implementations, software environments, and working applications.
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by a slowly progressive motor dysfunction and loss of dopaminergic neurons located in the substantia nigra innervating the striatum, causing depletion of dopamine, which leads to a hyperactivation of the striatal medial spiny neurons. To understand the pathophysiological details of PD and for developing and screening the novel therapeutic and/or neuroprotective substances, animal models for PD induced by neurotoxins have been developed. Among them, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is the most commonly used since it causes a selective loss of dopaminergic neurons in the substantia nigra and induces typical PD-like symptoms both in human and in experimental animals with a relatively simple application. In this chapter, we first overview the characteristics of PD and animal models with neurotoxins to establish, then focus on, MPTP-treated mouse and common marmoset models for PD with their practical experimental protocols and applications.
The physics of nuclear collective motion was pioneered by A Bohr and B R Mottelson 50 years ago. Since then, experimental and theoretical development in this field has been remarkable under the leadership of the Copenhagen group. In the 21st century, a new era has opened up due to the recent developments of experimental facilities, especially radioactive ion beams and large ?-ray arrays. Interest in collective motions is now shared in the research of other quantum many-body systems ? for example, microclusters and Bose-Einstein condensation. It is therefore timely and important to review the current understanding of collective motions and discuss new directions of future study.The main topics of the symposium include recent theoretical and experimental progress in the understanding of vibrational and rotational motions in nuclei. Collective motions of Bose-Einstein condensation and microclusters are also addressed. The symposium invited several keynote speakers to review and discuss our present understanding and to identify future challenges. Oral presentations are also selected from submitted contributions. This symposium is an opportunity not just to present progress and future prospects but to exchange new ideas and to provoke controversies through intellectual debates.The proceedings have been selected for coverage in: ? Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)
To satisfy the higher requirements of digitally converged embedded systems, this book describes heterogeneous multicore technology that uses various kinds of low-power embedded processor cores on a single chip. With this technology, heterogeneous parallelism can be implemented on an SoC, and greater flexibility and superior performance per watt can then be achieved. This book defines the heterogeneous multicore architecture and explains in detail several embedded processor cores including CPU cores and special-purpose processor cores that achieve highly arithmetic-level parallelism. The authors developed three multicore chips (called RP-1, RP-2, and RP-X) according to the defined architecture with the introduced processor cores. The chip implementations, software environments, and applications running on the chips are also explained in the book. Provides readers an overview and practical discussion of heterogeneous multicore technologies from both a hardware and software point of view; Discusses a new, high-performance and energy efficient approach to designing SoCs for digitally converged, embedded systems; Covers hardware issues such as architecture and chip implementation, as well as software issues such as compilers, operating systems, and application programs; Describes three chips developed according to the defined heterogeneous multicore architecture, including chip implementations, software environments, and working applications.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.