The disappearance behind the Iron Curtain of the American brothers Noel and Hermann Field in 1949, followed by that of Noels wife and their foster daughter, was one of the most publicized international mysteries of the Cold War. This dual memoir gives an intensely human dimension to that struggle, with Hermann narrating all that happened to him from the day he was abducted from the Warsaw airport to his release five years later, and Kate relating her unrelenting efforts to find her husband. Thousands of potential victims of Hitlers dragnet were rescued in 1939 and during World War II through separate efforts of the Field brothers. Arrested in Czechoslovakia in 1949, Noel was taken to Hungary and used as an example of American perfidy in show trials. Hermann went to Poland primarily to find out what had happened to his brother. After Hermanns abduction, he was taken to the cellar of a secret Polish prison, where he was held for five years. He gives us a detailed account of his battle to survive, alternating despair and horror with mordant humor. Meanwhile, his family had no idea whether he was still alive and if so, where. This moving story, based on detailed notes made by the authors during and shortly after the events described, presents an inside-outside counterpoint, as Hermanns chapters on his inward journey in his cellar world alternate with Kates efforts in London to find him by scrutinizing accounts of political events in Eastern Europe for clues and penetrating the diplomatic corridors of power in the West for help. Hermann had been arrested by a Polish security agent who later defected and became one of the Wests most important informants on Soviet operations in Eastern Europe. The search for the Field brothers was complicated by their history of leftist connections, for this tense period in the Cold War was also the era of McCarthyism in the United States. The book ends with an Epilogue that analyzes the events of fifty years ago in the light of what we know today, as the result of newly available archival material.
From the reviews: "Haus’ book provides numerous insights on topics of wide importance, and contains much material not available elsewhere in book form. [...] an indispensable resource for those working in quantum optics or electronics." Optics & Photonics News
This fourth edition contains a few additional figures. Otherwise only typographical er rors have been removed. The final chapter on Fundamentals of the Quantum Theory of Chemical Bonding is continued in an extended way in the textbook Molecular Physics and Elements of Quantum Chemistry by the same authors. This book contains, in particular, a profound presentation of group theory as applied to atoms and molecules. Furthermore, the in teraction between atoms and molecules and light is treated in detail. We thank again Springer-Verlag, in particular Dr. H.1. Kblsch and Mr. C.-D. Bachem for their excellent cooperation as always, and Prof. W. D. Brewer for his con tinuous support in translating our German text. Stuttgart, February 1994 H. Haken H. C. Wolf Preface to the Third Edition The second edition of this book again enjoyed a very positive reception from both uni versity teachers and students. In this edition we have removed all of the typographical errors that came to our attention. In order to keep the book as current as possible, new developments in the direct observation of individual atoms in electromagnetic traps (Paul traps) and of atoms in molecules on solid surfaces using the scanning tunnel microscope have been added to this edition.
This book, written by one of the pioneers of laser theory, is now considered a classic by many laser physicists. Originally published in the prestigious Encyclopedia of Physics series, it is now being republished in paperback to make it available not only to professors and scientists, but also to students. It presents a thorough treatment of the theory of laser resonators, the quantum theory of coherence, and the quantization of electromagnetic fields. Especial emphasis is placed on the quantum-mechanical treatment of laser light by means of quantum-mechanical Langevin equations, the density matrix equation, and the Fokker-Planck equation. The semiclassical approach and the rate equa tion approach are also presented. The principles underlying these approaches are used to derive the relevant equations, from which, in turn, the various properties of laser light are derived. Preface. The concept of the laser came into existence more than a decade ago when SCHAWLOW and TOWNES showed that the maser principle could be extended to the optical region. Since then this field has developed at an incredible pace which hardly anybody could have foreseen. The laser turned out to be a meeting place for such different disciplines as optics (e. g. spectroscopy). optical pumping, radio engineering, solid state physics, gas discharge physics and many other fields. The underlying structure of the laser theory is rather simple.
In this work the feasibility of a 4 MW 170 GHz coaxial-cavity gyrotron for continuous wave operation is demonstrated. For the first time complete physical designs of the major gyrotron components are elaborated. In a first step, one possible new operating mode is determined, followed by the development of detailed physical designs of the major gyrotron components: Diode and triode type electron gun, coaxial cavity, two-beam quasi-optical output coupler and depressed collector.
The concept of the laser came into existence more than a decade ago when ScHAWLOW and TowNES showed that the maser principle could be extended to the optical region. Since then this field has developed at an incredible pace which hardly anybody could have foreseen. The laser turned out to be a meeting place for such different disciplines as optics (e.g. spectroscopy), optical pumping, radio engineering, solid state physics, gas discharge physics and many other fields. The underlying structure of the laser theory is rather simple. The main questions are: what are the light intensities (a), what are the frequencies (b), what fluctua tions occur (c), or, in other words, what are the coherence properties. Roughly speaking these questions are treated by means of the rate equations (a), the semiclassical equations (b), and the fully quantum mechanical equations (c), respectively. The corresponding chapters are written in such a way that they can be read independently from each other. For more details about how to proceed, the reader is advised to consult Chap. I.4.
Atomic physics and its underlying quantum theory are the point of departure for many modern areas of physics, astrophysics, chemistry, biology, and even electrical engineering. This textbook provides a careful and eminently readable introduction to the results and methods of empirical atomic physics. The student will acquire the tools of quantum physics and at the same time learn about the interplay between experiment and theory. A chapter on the quantum theory of the chemical bond provides the reader with an introduction to molecular physics. Plenty of problems are given to elucidate the material. The authors also discuss laser physics and nonlinear spectroscopy, incorporating latest experimental results and showing their relevance to basic research. Extra items in the second edition include solutions to the exercises, derivations of the relativistic Klein-Gordon and Dirac equations, a detailed theoretical derivation of the Lamb shift, a discussion of new developments in the spectroscopy of inner shells, and new applications of NMR spectroscopy, for instance tomography.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.