Generatingfunctionology provides information pertinent to generating functions and some of their uses in discrete mathematics. This book presents the power of the method by giving a number of examples of problems that can be profitably thought about from the point of view of generating functions. Organized into five chapters, this book begins with an overview of the basic concepts of a generating function. This text then discusses the different kinds of series that are widely used as generating functions. Other chapters explain how to make much more precise estimates of the sizes of the coefficients of power series based on the analyticity of the function that is represented by the series. This book discusses as well the applications of the theory of generating functions to counting problems. The final chapter deals with the formal aspects of the theory of generating functions. This book is a valuable resource for mathematicians and students.
Combinatorial Algorithms for Computers and Calculators, Second Edition deals with combinatorial algorithms for computers and calculators. Topics covered range from combinatorial families such as the random subset and k-subset of an n-set and Young tableaux, to combinatorial structures including the cycle structure of a permutation and the spanning forest of a graph. Newton forms of a polynomial and the composition of power series are also discussed. Comprised of 30 chapters, this volume begins with an introduction to combinatorial algorithms by considering the generation of all of the 2n subsets of the set {1, 2,...,n}. The discussion then turns to the random subset and k-subset of an n-set; next composition of n into k parts; and random composition of n into k parts. Subsequent chapters focus on sequencing, ranking, and selection algorithms in general combinatorial families; renumbering rows and columns of an array; the cycle structure of a permutation; and the permanent function. Sorting and network flows are also examined, along with the backtrack method and triangular numbering in partially ordered sets. This book will be of value to both students and specialists in the fields of applied mathematics and computer science.
This is the Second Edition of the highly successful introduction to the use of generating functions and series in combinatorial mathematics. This new edition includes several new areas of application, including the cycle index of the symmetric group, permutations and square roots, counting polyominoes, and exact covering sequences. An appendix on using the computer algebra programs MAPLE(r) and Mathematica(r) to generate functions is also included. The book provides a clear, unified introduction to the basic enumerative applications of generating functions, and includes exercises and solutions, many new, at the end of each chapter. - Provides new applications on the cycle index of the symmetric group, permutations and square roots, counting polyominoes, and exact covering sequences - Features an Appendix on using MAPLE(r) and Mathematica (r) to generate functions - Includes many new exercises with complete solutions at the end of each chapter
This book is of interest to mathematicians and computer scientists working in finite mathematics and combinatorics. It presents a breakthrough method for analyzing complex summations. Beautifully written, the book contains practical applications as well as conceptual developments that will have applications in other areas of mathematics.From the ta
A survey of some of the work that has been done since the appearance of the second edition of Combinatorial Algorithms. Topics include progress in: Gray Codes, listing of subsets of given size of a given universe, listing rooted and free trees, selecting free trees and unlabeled graphs uniformly at random, and ranking and unranking problems on unlabeled trees.
Hardy, Littlewood and P6lya's famous monograph on inequalities [17J has served as an introduction to hard analysis for many mathema ticians. Some of its most interesting results center around Hilbert's inequality and generalizations. This family of inequalities determines the best bound of a family of operators on /p. When such inequalities are restricted only to finitely many variables, we can then ask for the rate at which the bounds of the restrictions approach the uniform bound. In the context of Toeplitz forms, such research was initiated over fifty years ago by Szego [37J, and the chain of ideas continues to grow strongly today, with fundamental contributions having been made by Kac, Widom, de Bruijn, and many others. In this monograph I attempt to draw together these lines of research from the point of view of sharpenings of the classical inequalities of [17]. This viewpoint leads to the exclusion of some material which might belong to a broader-based discussion, such as the elegant work of Baxter, Hirschman and others on the strong Szego limit theorem, and the inclusion of other work, such as that of de Bruijn and his students, which is basically nonlinear, and is therefore in some sense disjoint from the earlier investigations. I am grateful to Professor Halmos for inviting me to prepare this volume, and to Professors John and Olga Todd for several helpful comments. Philadelphia, Pa. H.S.W.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.