This book explores a different pragmatic approach to algorithmic complexity rooted or motivated by the theoretical foundations of algorithmic probability and explores the relaxation of necessary and sufficient conditions in the pursuit of numerical applicability, with some of these approaches entailing greater risks than others in exchange for greater relevance and applicability. Some established and also novel techniques in the field of applications of algorithmic (Kolmogorov) complexity currently coexist for the first time, ranging from the dominant ones based upon popular statistical lossless compression algorithms (such as LZW) to newer approaches that advance, complement, and also pose their own limitations. Evidence suggesting that these different methods complement each other for different regimes is presented, and despite their many challenges, some of these methods are better grounded in or motivated by the principles of algorithmic information. The authors propose that the field can make greater contributions to science, causation, scientific discovery, networks, and cognition, to mention a few among many fields, instead of remaining either as a technical curiosity of mathematical interest only or as a statistical tool when collapsed into an application of popular lossless compression algorithms. This book goes, thus, beyond popular statistical lossless compression and introduces a different methodological approach to dealing with algorithmic complexity. For example, graph theory and network science are classic subjects in mathematics widely investigated in the twentieth century, transforming research in many fields of science from economy to medicine. However, it has become increasingly clear that the challenge of analyzing these networks cannot be addressed by tools relying solely on statistical methods. Therefore, model-driven approaches are needed. Recent advances in network science suggest that algorithmic information theory could play an increasingly important role in breaking those limits imposed by traditional statistical analysis (entropy or statistical compression) in modeling evolving complex networks or interacting networks. Further progress on this front calls for new techniques for an improved mechanistic understanding of complex systems, thereby calling out for increased interaction between systems science, network theory, and algorithmic information theory, to which this book contributes.
This review volume consists of an indispensable set of chapters written by leading scholars, scientists and researchers in the field of Randomness, including related subfields specially but not limited to the strong developed connections to the Computability and Recursion Theory. Highly respected, indeed renowned in their areas of specialization, many of these contributors are the founders of their fields. The scope of Randomness Through Computation is novel. Each contributor shares his personal views and anecdotes on the various reasons and motivations which led him to the study of the subject. They share their visions from their vantage and distinctive viewpoints. In summary, this is an opportunity to learn about the topic and its various angles from the leading thinkers.
This volume, with a foreword by Sir Roger Penrose, discusses the foundations of computation in relation to nature.It focuses on two main questions: What is computation? How does nature compute?The contributors are world-renowned experts who have helped shape a cutting-edge computational understanding of the universe. They discuss computation in the world from a variety of perspectives, ranging from foundational concepts to pragmatic models to ontological conceptions and philosophical implications.The volume provides a state-of-the-art collection of technical papers and non-technical essays, representing a field that assumes information and computation to be key in understanding and explaining the basic structure underpinning physical reality. It also includes a new edition of Konrad Zuse''s OC Calculating SpaceOCO (the MIT translation), and a panel discussion transcription on the topic, featuring worldwide experts in quantum mechanics, physics, cognition, computation and algorithmic complexity.The volume is dedicated to the memory of Alan M Turing OCo the inventor of universal computation, on the 100th anniversary of his birth, and is part of the Turing Centenary celebrations.
Biological systems are extensively studied as interactions forming complex networks. Reconstructing causal knowledge from, and principles of, these networks from noisy and incomplete data is a challenge in the field of systems biology. Based on an online course hosted by the Santa Fe Institute Complexity Explorer, this book introduces the field of Algorithmic Information Dynamics, a model-driven approach to the study and manipulation of dynamical systems . It draws tools from network and systems biology as well as information theory, complexity science and dynamical systems to study natural and artificial phenomena in software space. It consists of a theoretical and methodological framework to guide an exploration and generate computable candidate models able to explain complex phenomena in particular adaptable adaptive systems, making the book valuable for graduate students and researchers in a wide number of fields in science from physics to cell biology to cognitive sciences.
This book explores a different pragmatic approach to algorithmic complexity rooted or motivated by the theoretical foundations of algorithmic probability and explores the relaxation of necessary and sufficient conditions in the pursuit of numerical applicability, with some of these approaches entailing greater risks than others in exchange for greater relevance and applicability. Some established and also novel techniques in the field of applications of algorithmic (Kolmogorov) complexity currently coexist for the first time, ranging from the dominant ones based upon popular statistical lossless compression algorithms (such as LZW) to newer approaches that advance, complement, and also pose their own limitations. Evidence suggesting that these different methods complement each other for different regimes is presented, and despite their many challenges, some of these methods are better grounded in or motivated by the principles of algorithmic information. The authors propose that the field can make greater contributions to science, causation, scientific discovery, networks, and cognition, to mention a few among many fields, instead of remaining either as a technical curiosity of mathematical interest only or as a statistical tool when collapsed into an application of popular lossless compression algorithms. This book goes, thus, beyond popular statistical lossless compression and introduces a different methodological approach to dealing with algorithmic complexity. For example, graph theory and network science are classic subjects in mathematics widely investigated in the twentieth century, transforming research in many fields of science from economy to medicine. However, it has become increasingly clear that the challenge of analyzing these networks cannot be addressed by tools relying solely on statistical methods. Therefore, model-driven approaches are needed. Recent advances in network science suggest that algorithmic information theory could play an increasingly important role in breaking those limits imposed by traditional statistical analysis (entropy or statistical compression) in modeling evolving complex networks or interacting networks. Further progress on this front calls for new techniques for an improved mechanistic understanding of complex systems, thereby calling out for increased interaction between systems science, network theory, and algorithmic information theory, to which this book contributes.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.