Offering complete coverage of the technologies, machine tools, and operations of a wide range of machining processes, Machining Technology presents the essential principles of machining and then examines traditional and nontraditional machining methods. Available for the first time in one easy-to-use resource, the book elucidates the fundame
This two-volume set addresses both current and developing topics of advanced machining technologies and machine tools used in industry. The treatments are aimed at motiving and challenging the reader to explore viable solutions to a variety of questions regarding product design and optimum selection of machining operations for a given task. This two-volume set will be useful to professionals, students, and companies in the areas of mechanical, industrial, manufacturing, materials, and production engineering fields. Traditional Machining Technology covers the technologies, machine tools, and operations of traditional machining processes. These include the general-purpose machine tools used for turning, drilling, and reaming, shaping and planing, milling, grinding and finishing operations. Thread and gear cutting, and broaching processes are included along with semi-automatic, automatic, NC and CNC machine tools, operations, tooling, mechanisms, accessories, jigs and fixtures, and machine tool dynamometry are discussed. Non-Traditional and Advanced Machining Technologies covers the technologies, machine tools, and operations of non-traditional mechanical, chemical and thermal machining processes. Assisted machining technologies, machining of difficult-to-cut materials, design for machining, accuracy and surface integrity of machined parts, environment-friendly machine tools and operations, and hexapods are also presented. The topics covered throughout this volume reflect the rapid and significant advances that have occurred in various areas in machining technologies.
Non-Traditional and Advanced Machining Technologies covers the technologies, machine tools, and operations of non-traditional machining processes and assisted machining technologies. Two separate chapters deal with the machining techniques of difficult-to-cut materials, such as stainless, super alloys, ceramics, and composites. Design for machining, accuracy and surface integrity of machined parts, environment-friendly machine tools and operations, and hexapods are also presented. The topics covered throughout reflect the rapid and significant advances that have occurred in various areas in machining technologies and are organized and described in such a manner to draw the interest of the reader. The treatments are aimed at motiving and challenging the reader to explore viable solutions to a variety of questions regarding product design and optimum selection of machining operations for a given task. The book will be useful to professionals, students, and companies in the areas of industrial, manufacturing, mechanical, materials, and production engineering fields.
Written by an expert with over 40 years of experience in research and teaching machining and related topics, this new edition textbook presents the principles and theories of material removal and applications for conventional, nonconventional and hybrid machining processes. The new edition is ideal for undergraduate students in production, materials, industrial, mechatronics, marine, mechanical, and manufacturing engineering programs, and also useful for graduate programs related to higher-level machining topics, as well as professional engineers and technicians. All chapters are updated, with additional chapters covering new topics of composite machining, vibration assisted machining and mass finishing operations. Features Presents a wide spectrum of metal cutting, abrasive machining, nonconventional and hybrid machining processes Analyzes the chip formation in machining by cutting and abrasion processes as well as the material removal mechanisms in the nonconventional and the hybrid processes Explains the role of each process variables on its behavior and technological characteristics in terms of material removal, product accuracy and surface quality Portrays the theoretical and empirical formula for removal rates and surface finish in different processes as well as very useful technical data that help in solving and analysis of day-to-day shop floor problems that face manufacturing engineers Clarifies the machinability concept and introduces the general guidelines for machining process selection
Additive manufacturing (AM) is a manufacturing process that has emerged as a viable technology for the production of engineering components. The aspects associated with additive manufacturing, such as less material wastage, ease of manufacturing, less human involvement, fewer tool and fixture requirements, and less post-processing, make the process sustainable for industrial use. Further, this new technology has led to highly optimized product characteristics and functional aspects. This textbook introduces the basics of this new additive manufacturing technology to individuals who will be involved in the grand spectrum of manufacturing finished products. Fundamentals of Additive Manufacturing Technology: Principles, Technologies, and Applications provides knowledge and insight into various aspects of AM and deals with the basics, categories, materials, tooling, and equipment used. It presents a classified and complete description of the most common and recently developed additive manufacturing methods with applications, solved examples, and review questions. This textbook also emphasizes the fundamentals of the process, its capabilities, typical applications, advantages, and limitations, and also discusses the challenges, needs, and general recommendations for additive manufacturing. This fundamental textbook is written specifically for undergraduates in manufacturing, mechanical, industrial, and materials engineering disciplines for courses in manufacturing technology taught in engineering colleges and institutions all over the world. It also covers the needs of production and manufacturing engineers and technologists participating in related industries. Additionally, the textbook can be used by students in other disciplines concerned with design and manufacturing, such as automotive, biomedical, and aerospace engineering.
Completely revised and updated, this second edition of Fundamentals of Machining Processes: Conventional and Nonconventional Processes covers the fundamentals machining by cutting, abrasion, erosion, and combined processes. The new edition has been expanded with two additional chapters covering the concept of machinability and the roadmap for selecting machining processes that meet required design specification. See What’s New in the Second Edition: Explanation of the definition of the relative machinability index and how the machinability is judged Important factors affecting the machinability ratings Machinability ratings of common engineering materials by conventional and nonconventional methods. Factors to be considered when selecting a machining process that meets the design specifications, including part features, materials, product accuracy, surface texture, surface integrity, cost, environmental impacts, and the process and the machine selected capabilities Introduction to new Magnetic Field Assisted Finishing Processes Written by an expert with 37 years of experience in research and teaching machining and related topics, this covers machining processes that range from basic conventional metal cutting, abrasive machining to the most advanced nonconventional and micromachining processes. The author presents the principles and theories of material removal and applications for conventional and nonconventional machining processes, discusses the role of machining variables in the technological characteristics of each process, and provides treatment of current technologies in high speed machining and micromachining. The treatment of the different subjects has been developed from basic principles and does not require the knowledge of advanced mathematics as a prerequisite. A fundamental textbook for undergraduate students, this book contains machining data, solved examples, and review questions which are useful for students and manufacturing engineers.
This new edition textbook provides comprehensive knowledge and insight into various aspects of manufacturing technology, processes, materials, tooling, and equipment. Its main objective is to introduce the grand spectrum of manufacturing technology to individuals who will be involved in the design and manufacturing of finished products and to provide them with basic information on manufacturing technologies. Manufacturing Technology: Materials, Processes, and Equipment, Second Edition, is written in a descriptive manner, where the emphasis is on the fundamentals of the process, its capabilities, typical applications, advantages, and limitations. Mathematical modeling and equations are used only when they enhance the basic understanding of the material dealt with. The book is a fundamental textbook that covers all the manufacturing processes, materials, and equipment used to convert the raw materials to a final product. It presents the materials used in manufacturing processes and covers the heat treatment processes, smelting of metals, and other technological processes such as casting, forming, powder metallurgy, joining processes, and surface technology. Manufacturing processes for polymers, ceramics, and composites are also covered. The book also covers surface technology, fundamentals of traditional and nontraditional machining processes, numerical control of machine tools, industrial robots and hexapods, additive manufacturing, and industry 4.0 technologies. The book is written specifically for undergraduates in industrial, manufacturing, mechanical, and materials engineering disciplines of the second to fourth levels to cover complete courses of manufacturing technology taught in engineering colleges and institutions all over the world. It also covers the needs of production and manufacturing engineers and technologists participating in related industries where it is expected to be part of their professional library. Additionally, the book can be used by students in other disciplines concerned with design and manufacturing, such as automotive and aerospace engineering.
Traditional Machining Technology describes the fundamentals, basic elements, and operations of general-purpose metal cutting and abrasive machine tools used for the production and grinding of cylindrical and flat surfaces by turning, drilling, and reaming; shaping and planing; and milling processes. Special-purpose machines and operations used for thread cutting, gear cutting, and broaching processes are included along with semiautomatic, automatic, NC, and CNC machine tools; operations, tooling, mechanisms, accessories, jigs and fixtures, and machine-tool dynamometry are discussed. The treatment throughout the book is aimed at motivating and challenging the reader to explore technologies and economically viable solutions regarding the optimum selection of machining operations for a given task. This book will be useful to professionals, students, and companies in the industrial, manufacturing, mechanical, materials, and production engineering fields.
Today’s stringent design requirements and difficult-to-machine materials such as tough super alloys, ceramics, and composites, have made traditional machining processes costly and obsolete. As a result, manufacturers and machine design engineers are turning to advance machining processes. These machining processes utilizes electrical, chemical, and optimal sources of energy to bind, form and cut materials. El-Hofy rigorously explains how each of these advanced machining process work, their machining system components, process variables and industrial applications, making this book the perfect guide for anyone designing, researching or converting to a more advance machining process.
Written by an expert with over 40 years of experience in research and teaching machining and related topics, this new edition textbook presents the principles and theories of material removal and applications for conventional, nonconventional and hybrid machining processes. The new edition is ideal for undergraduate students in production, materials, industrial, mechatronics, marine, mechanical, and manufacturing engineering programs, and also useful for graduate programs related to higher-level machining topics, as well as professional engineers and technicians. All chapters are updated, with additional chapters covering new topics of composite machining, vibration assisted machining and mass finishing operations. Features Presents a wide spectrum of metal cutting, abrasive machining, nonconventional and hybrid machining processes Analyzes the chip formation in machining by cutting and abrasion processes as well as the material removal mechanisms in the nonconventional and the hybrid processes Explains the role of each process variables on its behavior and technological characteristics in terms of material removal, product accuracy and surface quality Portrays the theoretical and empirical formula for removal rates and surface finish in different processes as well as very useful technical data that help in solving and analysis of day-to-day shop floor problems that face manufacturing engineers Clarifies the machinability concept and introduces the general guidelines for machining process selection
Written by an expert with over 40 years of experience in research and teaching machining and related topics, this new edition textbook presents the principles and theories of material removal and applications for conventional, nonconventional and hybrid machining processes. The new edition is ideal for undergraduate students in production, materials, industrial, mechatronics, marine, mechanical, and manufacturing engineering programs, and also useful for graduate programs related to higher-level machining topics, as well as professional engineers and technicians. All chapters are updated, with additional chapters covering new topics of composite machining, vibration assisted machining and mass finishing operations. Features Presents a wide spectrum of metal cutting, abrasive machining, nonconventional and hybrid machining processes Analyzes the chip formation in machining by cutting and abrasion processes as well as the material removal mechanisms in the nonconventional and the hybrid processes Explains the role of each process variables on its behavior and technological characteristics in terms of material removal, product accuracy and surface quality Portrays the theoretical and empirical formula for removal rates and surface finish in different processes as well as very useful technical data that help in solving and analysis of day-to-day shop floor problems that face manufacturing engineers Clarifies the machinability concept and introduces the general guidelines for machining process selection
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.