This classic work offers scores of stimulating, mind-expanding games and puzzles: arithmetical and geometrical problems, chessboard recreations, magic squares, map-coloring problems, cryptography and cryptanalysis, much more. "A must to add to your mathematics library" ? The Mathematics Teacher. Index. References for Further Study. Includes 150 black-and-white line illustrations.
Foremost book available on polytopes, incorporating ancient Greek and most modern work. Discusses polygons, polyhedrons, and multi-dimensional polytopes. Definitions of symbols. Includes 8 tables plus many diagrams and examples. 1963 edition.
When we began to consider the scope of this book, we envisaged a catalogue supplying at least one abstract definition for any finitely generated group that the reader might propose. But we soon realized that more or less arbitrary restrictions are necessary, because interesting groups are so numerous. For permutation groups of degree 8 or less (i. e., subgroups of e ), the reader cannot do better than consult the 8 tables of JosEPHINE BuRNS (1915), while keeping an eye open for misprints. Our own tables (on pages 134-143) deal with groups of low order, finiteandinfinite groups of congruent transformations, symmetric and alternating groups, linear fractional groups, and groups generated by reflections in real Euclidean space of any number of dimensions. The best substitute foramoreextensive catalogue is the description (in Chapter 2) of a method whereby the reader can easily work out his own abstract definition for almost any given finite group. This method is sufficiently mechanical for the use of an electronic computer. There is also a topological method (Chapter 3), suitable not only for groups of low order but also for some infinite groups. This involves choosing a set of generators, constructing a certain graph (the Cayley diagram or DEHNsehe Gruppenbild), and embedding the graph into a surface. Cases in which the surface is a sphere or a plane are described in Chapter 4, where we obtain algebraically, and verify topologically, an abstract definition for each of the 17 space groups of two-dimensional crystallography.
Foremost book available on polytopes, incorporating ancient Greek and most modern work. Discusses polygons, polyhedrons, and multi-dimensional polytopes. Definitions of symbols. Includes 8 tables plus many diagrams and examples. 1963 edition.
Absorbing essays demonstrate the charms of mathematics. Stimulating and thought-provoking treatment of geometry's crucial role in a wide range of mathematical applications, for students and mathematicians.
H.S.M. Coxeter is one of the world's best-known mathematicians who wrote several papers and books on geometry, algebra and topology, and finite mathematics. This book is being published in conjunction with the 50th anniversary of the Canadian Mathematical Society and it is a collection of 26 papers written by Dr. Coxeter.
The properties of regular solids exercise a fascination which often appeals strongly to the mathematically inclined, whether they are professionals, students or amateurs. In this classic book Professor Coxeter explores these properties in easy stages, introducing the reader to complex polyhedra (a beautiful generalization of regular solids derived from complex numbers) and unexpected relationships with concepts from various branches of mathematics: magic squares, frieze patterns, kaleidoscopes, Cayley diagrams, Clifford surfaces, crystallographic and non-crystallographic groups, kinematics, spherical trigonometry, and algebraic geometry. In the latter half of the book, these preliminary ideas are put together to describe a natural generalization of the Five Platonic Solids. This updated second edition contains a new chapter on Almost Regular Polytopes, with beautiful 'abstract art' drawings. New exercises and discussions have been added throughout the book, including an introduction to Hopf fibration and real representations for two complex polyhedra.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.