Understanding the fatigue behaviour of structural components under variable load amplitude is an essential prerequisite for safe and reliable light-weight design. For designing and dimensioning, the expected stress (load) is compared with the capacity to withstand loads (fatigue strength). In this process, the safety necessary for each particular application must be ensured. A prerequisite for ensuring the required fatigue strength is a reliable load assumption. The authors describe the transformation of the stress- and load-time functions which have been measured under operational conditions to spectra or matrices with the application of counting methods. The aspects which must be considered for ensuring a reliable load assumption for designing and dimensioning are discussed in detail. Furthermore, the theoretical background for estimating the fatigue life of structural components is explained, and the procedures are discussed for numerous applications in practice. One of the prime intentions of the authors is to provide recommendations which can be implemented in practical applications.
Infections must be thought as one of the most important, if not the most important, risk factors for cancer development in humans. Approximately 15-20% of all cases of cancer around the world are caused by viruses. The establishment of a causal relationship between the presence of specific infective agents and certain types of human cancer represents a key step in the development of novel therapeutic and preventive strategies. In this book, Professor zur Hausen (Nobel Prize in Physiology/Medicine 2008) provides a thorough and comprehensive overview on carcinogenic infective agents -- viruses, bacteria, parasites and protozoons -- as well as their corresponding transforming capacities and mechanisms. The result is an invaluable and instructive reference for all oncologists, microbiologists and molecular biologists working in the area of infections and cancer. The author was among the first scientists to reveal the cervical cancer-inducing mechanisms of human papilloma viruses and isolated HPV16 and HPV18, and, as early as 1976, published the hypothesis that wart viruses play a role in the development of this type of cancer.
This book gives a full account of the development process for automotive transmissions. Main topics: - Overview of the traffic – vehicle – transmission system - Mediating the power flow in vehicles - Selecting the ratios - Vehicle transmission systems - basic design principles - Typical designs of vehicle transmissions - Layout and design of important components, e.g. gearshifting mechanisms, moving-off elements, pumps, retarders - Transmission control units - Product development process, Manufacturing technology of vehicle transmissions, Reliability and testing The book covers manual, automated manual and automatic transmissions as well as continuously variable transmissions and hybrid drives for passenger cars and commercial vehicles. Furthermore, final drives, power take-offs and transfer gearboxes for 4-WD-vehicles are considered. Since the release of the first edition in 1999 there have been a lot of changes in the field of vehicles and transmissions. About 40% of the second edition’s content is new or revised with new data.
Understanding the fatigue behaviour of structural components under variable load amplitude is an essential prerequisite for safe and reliable light-weight design. For designing and dimensioning, the expected stress (load) is compared with the capacity to withstand loads (fatigue strength). In this process, the safety necessary for each particular application must be ensured. A prerequisite for ensuring the required fatigue strength is a reliable load assumption. The authors describe the transformation of the stress- and load-time functions which have been measured under operational conditions to spectra or matrices with the application of counting methods. The aspects which must be considered for ensuring a reliable load assumption for designing and dimensioning are discussed in detail. Furthermore, the theoretical background for estimating the fatigue life of structural components is explained, and the procedures are discussed for numerous applications in practice. One of the prime intentions of the authors is to provide recommendations which can be implemented in practical applications.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.