Polymers are mainly characterized by molar mass, chemical composition, functionality and architecture. The determination of the complex structure of polymers by chromatographic and spectroscopic methods is one of the major concerns of polymer analysis and characterization. This lab manual describes the experimental approach to the chromatographic analysis of polymers. Different chromatographic methods, their theoretical background, equipment, experimental procedures and applications are discussed. The book will enable polymer chemists, physicists and material scientists as well as students of macromolecular and analytical science to optimize chromatographic conditions for a specific separation problem. Special emphasis is given to the description of applications for homo- and copolymers and polymer blends.
This Springer Laboratory volume introduces the reader to advanced techniques for the separation and fractionation of polyolefins. It includes detailed information on experimental protocols and procedures, addressing the experimental background of different polyolefin fractionation techniques in great detail. The book summarizes important applications in all major fractionation methods with emphasis on multidimensional analytical approaches. It comprises the most powerful modern techniques, such as high temperature size exclusion chromatography (HT-SEC) for molar mass analysis, temperature rising elution fractionation (TREF) and crystallization analysis fractionation (CRYSTAF) for the analysis of chemical composition and branching, high temperature two-dimensional liquid chromatography (HT-2D-LC), solvent and temperature gradient interaction chromatography (SGIC and TGIC) and crystallization elution fractionation (CEF). Beginners as well as experienced chromatographers will benefit from this concise introduction to a great variety in instrumentation, separation procedures and applications. With detailed descriptions of experimental approaches for the analysis of complex polyolefins, the readers are offered a toolbox to solve simple as well as sophisticated separation tasks. The book starts with an introduction into the molecular complexity of polyolefins - the most widely used synthetic polymers with rapidly growing production capacities. It systematically discusses crystallization based fractionation techniques including TREF, CRYSTAF and CEF and column chromatographic techniques for molar mass, chemical composition and microstructure, as well as the combination of different fractionations in multidimensional experimental setups. This book also includes basic information on the application of high-temperature field-flow fractionation.
MALDI-TOF mass spectrometry is one of the latest and most fascinating new developments in the analysis of organic compounds. Originally developed for the analysis of biomolecules, it has developed into one of the most powerful techniques for the characterization of synthetic polymers. This book describes the fundamentals of the MALDI process and the technical features of MALDI-TOF instrumentation. It reviews the application of MALDI-TOF for identification, chemical and molar mass analysis of synthetic polymers. With many examples, the monograph examines experimental protocols for the determination of endgroups, the analysis of copolymers and additives, and the coupling of liquid chromatography and MALDI-TOF in detail.
This book introduces the reader to thermal field-flow fractionation and discusses its advantages over the fundamental problems associated with traditional column-based analytical techniques commonly used to characterize polymers and macromolecules. The authors discuss the theoretical background, equipment, experimental procedures as well as the recent advances and applications of thermal field-flow fractionation. Complete with several practical examples and troubleshooting guidelines, the book is written for beginners and experienced separation scientists alike and will enable its readers to optimize their experimental conditions for their specific separation needs and problems.
This book presents the principle ideas of combining different analytical techniques in multi-dimensional analysis schemes. It reviews the basic principles and instrumentation of multi-dimensional chromatography and the hyphenation of liquid chromatography with selective spectroscopic detectors and presents experimental protocols for the analysis of complex polymers. It is the consequent continuation of "HPLC of Polymers" from 1999 by the same authors. Like its 'predecessor', this book discusses the theoretical background, equipment, experimental procedures and applications for each separation technique, but in contrast treats multi-dimensional and coupled techniques. "Multidimensional HPLC of Polymers" intends to review the state of the art in polymer chromatography and to summarize the developments in the field during the last 15 years. With its tutorial and laboratory manual style it is written for beginners as well as for experienced chromatographers, and will enable its readers (polymer chemists, physicists and material scientists, as well as students of polymer and analytical sciences) to optimize the experimental conditions for their specific separation problems.
This Laboratory Manual contains detailed descriptions for the synthesis and characterization of macromolecules. Around 110 elaborated examples, consisting of descriptions of experiments, as well as sufficient theoretical explanations enable the reader to learn about the syntheses, modification, characterization and properties of polymers including recent developments. All experiments can be conducted with adequate laboratory equipment. Suitable for students in organic and polymer chemistry as well as for chemists in industry who want to acquaint themselves with the theoretical and practical aspects of macromolecular chemistry.
... this is an excellent compilation of data which should be on the bookshelves of all analysts interested in the benzodiazepines. It is to be hoped that, with the introduction of so many new ben zodiazepines, the author will quickly add these in a second edi tion" (A. C. Moffat in: Trends in Analytical Chemistry, 1983). This review, deputizing for many others, reflects the friendly reception enjoyed by the first volume of Benzodiazepines, which was published in 1982 and apparently closed a gap in the ben zodiazepine literature. In the meantime, Benzodiazepines has established itself as a standard book, as evidenced by numerous letters and quotations. Suggestions were also soon made for a new edition in view of the unusually rapid development in the field of the benzodiazepines. It became quickly obvious, however, that it would not be sufficient to publish a revised second edition, but that a completely new second volume would be required for which, however, the successful previous format could be largely retained. The following considerations seem worth mentioning in connection with the preparation of Volume II: - To ensure continuity with Volume I as far as possible, the list of references was consecutively numbered (references 1 to 3779 in Volume I, references 3780 to 11338 in Volume II). Whereas in Vol. I the substances appear in the sequential order of their historical development they are listed in alphabetical order in Vol. II.
This book introduces the reader to thermal field-flow fractionation and discusses its advantages over the fundamental problems associated with traditional column-based analytical techniques commonly used to characterize polymers and macromolecules. The authors discuss the theoretical background, equipment, experimental procedures as well as the recent advances and applications of thermal field-flow fractionation. Complete with several practical examples and troubleshooting guidelines, the book is written for beginners and experienced separation scientists alike and will enable its readers to optimize their experimental conditions for their specific separation needs and problems.
MALDI-TOF mass spectrometry is one of the latest and most fascinating new developments in the analysis of organic compounds. Originally developed for the analysis of biomolecules, it has developed into one of the most powerful techniques for the characterization of synthetic polymers. This book describes the fundamentals of the MALDI process and the technical features of MALDI-TOF instrumentation. It reviews the application of MALDI-TOF for identification, chemical and molar mass analysis of synthetic polymers. With many examples, the monograph examines experimental protocols for the determination of endgroups, the analysis of copolymers and additives, and the coupling of liquid chromatography and MALDI-TOF in detail.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.