Computational Methods for Nonlinear Dynamical Systems: Theory and Applications in Aerospace Engineering proposes novel ideas and develops highly-efficient and accurate methods for solving nonlinear dynamic systems, drawing inspiration from the weighted residual method and the asymptotic method. Proposed methods can be used both for real-time simulation and the analysis of nonlinear dynamics in aerospace engineering. The book introduces global estimation methods and local computational methods for nonlinear dynamic systems. Starting from the classic asymptotic, finite difference and weighted residual methods, typical methods for solving nonlinear dynamic systems are considered. In addition, new high-performance methods are proposed, such as time-domain collocation and local variational iteration. The book summarizes and develops computational methods for strongly nonlinear dynamic systems and considers the practical application of the methods within aerospace engineering. - Presents global methods for solving periodic nonlinear dynamical behaviors - Gives local methods for solving transient nonlinear responses - Outlines computational methods for linear, nonlinear, ordinary and partial differential equations - Emphasizes the development of accurate and efficient numerical methods that can be used in real-world missions - Reveals practical applications of methods through orbital mechanics and structural dynamics
A one-of-a-kind exploration of the fundamentals of functional polymer foams, including their fabrication and a variety of their most common applications In Functional Polymer Foams: Green Fabrication Methods, Performance and Applications, distinguished researcher Dr. Hao-Yang Mi delivers an up-to-date and incisive discussion of the fundamentals of functional polymer foams, as well as their fabrication methods and a diverse set of applications. The author covers a variety of the material’s applications, including energy absorption, acoustic absorption, superhydrophobic materials, tissue engineering scaffolding, flexible sensors, and solar steam generation. Readers will find comprehensive summaries of the mechanisms, fabrication methods, and relative performance of various polymer foams, as well as: A thorough introduction to functional polymer foams, including the fundamentals of SCF foaming Comprehensive explorations of energy absorbing polymer foams, including mechanisms of action, testing, and characterization Practical discussions of functional polymer foams used in thermal insulation, including their fabrication Complete treatments of acoustic absorption polymer foams and superhydrophobic foams, including advanced applications Perfect for polymer chemists, materials scientists, and researchers working in the sensor industry, Functional Polymer Foams will also benefit sensor developers and electronics engineers with an interest in the fabrication methods and applications of functional polymer foams.
Computational Methods for Nonlinear Dynamical Systems: Theory and Applications in Aerospace Engineering proposes novel ideas and develops highly-efficient and accurate methods for solving nonlinear dynamic systems, drawing inspiration from the weighted residual method and the asymptotic method. Proposed methods can be used both for real-time simulation and the analysis of nonlinear dynamics in aerospace engineering. The book introduces global estimation methods and local computational methods for nonlinear dynamic systems. Starting from the classic asymptotic, finite difference and weighted residual methods, typical methods for solving nonlinear dynamic systems are considered. In addition, new high-performance methods are proposed, such as time-domain collocation and local variational iteration. The book summarizes and develops computational methods for strongly nonlinear dynamic systems and considers the practical application of the methods within aerospace engineering. - Presents global methods for solving periodic nonlinear dynamical behaviors - Gives local methods for solving transient nonlinear responses - Outlines computational methods for linear, nonlinear, ordinary and partial differential equations - Emphasizes the development of accurate and efficient numerical methods that can be used in real-world missions - Reveals practical applications of methods through orbital mechanics and structural dynamics
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.