This text provides an overview of recent developments in Gabor analysis. Scientists in various disciplines related to the subject treat a range of topics from covering theory to numerics, as well as applications of Gabor analysis.
Pseudo-differential operators were initiated by Kohn, Nirenberg and Hörmander in the sixties of the last century. Beside applications in the general theory of partial differential equations, they have their roots also in the study of quantization first envisaged by Hermann Weyl thirty years earlier. Thanks to the understanding of the connections of wavelets with other branches of mathematical analysis, quantum physics and engineering, such operators have been used under different names as mathematical models in signal analysis since the last decade of the last century. The volume investigates the mathematics of quantization and signals in the context of pseudo-differential operators, Weyl transforms, Daubechies operators, Wick quantization and time-frequency localization operators. Applications to quantization, signal analysis and the modern theory of PDE are highlighted.
Theory of Function Spaces II deals with the theory of function spaces of type Bspq and Fspq as it stands at the present. These two scales of spaces cover many well-known function spaces such as Hölder-Zygmund spaces, (fractional) Sobolev spaces, Besov spaces, inhomogeneous Hardy spaces, spaces of BMO-type and local approximation spaces which are closely connected with Morrey-Campanato spaces. Theory of Function Spaces II is self-contained, although it may be considered an update of the author’s earlier book of the same title. The book’s 7 chapters start with a historical survey of the subject, and then analyze the theory of function spaces in Rn and in domains, applications to (exotic) pseudo-differential operators, and function spaces on Riemannian manifolds. ------ Reviews The first chapter deserves special attention. This chapter is both an outstanding historical survey of function spaces treated in the book and a remarkable survey of rather different techniques developed in the last 50 years. It is shown that all these apparently different methods are only different ways of characterizing the same classes of functions. The book can be best recommended to researchers and advanced students working on functional analysis. - Zentralblatt MATH
These notes give an account of recent work in harmonic analysis dealing with the analytical foundations of A. Weil's theory of metaplectic groups. It is shown that Weil's main theorem holds for a class of functions (a certain Segal algebra) larger than that of the Schwartz-Bruhat functions considered by Weil. The theorem is derived here from some general results about this class which seems to be a rather natural one in the context of Weil's theory. No previous knowledge of the latter is assumed, however, and the theory is developed here, step by step; Further, a complete discussion of the Segal algebra concerned is given, with references to the literature. Weil's metaplectic groups are somewhat easier to investigate when the characteristic is not 2; the case of characteristic 2 presents some special features which are fully discussed. New problems that arise are indicated.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.