This book discusses the current biomaterials used for dental applications and the basic sciences underpinning their application. The most critical structures in the oral cavity are the teeth, which play a central role in speaking, biting, chewing, tasting and swallowing. Teeth consist of three types of tissue: the cementum, enamel and dentin, with bone and gingival tissue serving as supporting structures. Caries, tooth wear, trauma and mechanical defects can lead to severe facial conditions; however, correcting these defects remains a challenge for scientists and dentists. Presenting insights form a broad range of disciplines, including materials science, biology, physiology and clinical science, this book provides a timely review of the principles, processing and application of dental materials.
This book reviews drug delivery systems as mechanisms to introduce therapeutic agents into the body to help or improve tissue function, and examines different drug delivery systems applied in various organs. To date, polymeric systems, ceramic particles or composites have been used in different applications such as injectable, coatings of implants, scaffolds, or implantable devices. Such systems should be able to retain the therapeutic agent and release it in uniform amounts at a specific time.
This book provides an overview of the composition of polymeric and ceramic bone cements. It also discusses complex, biomimetic structures based on biomaterials, such as cells and bioactive molecules, which more closely resemble natural bone The first chapter describes the main concepts of the cementation process and the parameters affecting it, while the second chapter focuses on the composition and structure of candidate biomaterials. Lastly, the third and fourth chapters present recent research aimed at improving the ability of naked biomaterials to enhance bone healing by adding cells and bioactive agents.
This short book presents an overview of different types of biomaterial such as bio ceramics, bio polymers, metals and bio composites, while especially focusing on nano biomaterials and their applications in different tissues. It provides a compact introduction to nano materials for drug delivery systems, tissue engineering and implants, while also reviewing essential trends in the biomaterial field over the last few decades and the latest developments.
This short book presents an overview of different types of biomaterial such as bio ceramics, bio polymers, metals and bio composites, while especially focusing on nano biomaterials and their applications in different tissues. It provides a compact introduction to nano materials for drug delivery systems, tissue engineering and implants, while also reviewing essential trends in the biomaterial field over the last few decades and the latest developments.
This book discusses the current biomaterials used for dental applications and the basic sciences underpinning their application. The most critical structures in the oral cavity are the teeth, which play a central role in speaking, biting, chewing, tasting and swallowing. Teeth consist of three types of tissue: the cementum, enamel and dentin, with bone and gingival tissue serving as supporting structures. Caries, tooth wear, trauma and mechanical defects can lead to severe facial conditions; however, correcting these defects remains a challenge for scientists and dentists. Presenting insights form a broad range of disciplines, including materials science, biology, physiology and clinical science, this book provides a timely review of the principles, processing and application of dental materials.
This book reviews drug delivery systems as mechanisms to introduce therapeutic agents into the body to help or improve tissue function, and examines different drug delivery systems applied in various organs. To date, polymeric systems, ceramic particles or composites have been used in different applications such as injectable, coatings of implants, scaffolds, or implantable devices. Such systems should be able to retain the therapeutic agent and release it in uniform amounts at a specific time.
This book provides an overview of the composition of polymeric and ceramic bone cements. It also discusses complex, biomimetic structures based on biomaterials, such as cells and bioactive molecules, which more closely resemble natural bone The first chapter describes the main concepts of the cementation process and the parameters affecting it, while the second chapter focuses on the composition and structure of candidate biomaterials. Lastly, the third and fourth chapters present recent research aimed at improving the ability of naked biomaterials to enhance bone healing by adding cells and bioactive agents.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.