Comprehensive resource on the finite element method in structural steel connection design through verification with AISC 360 provisions Steel Connection Design by Inelastic Analysis covers the use of the finite element method in structural steel connection design. Verification with AISC 360 provisions is presented, focusing on the Component-Based Finite Element Method (CBFEM), a novel approach that provides the global behavior and verification of resistance for the design of structural steel connections. This method is essential for fast and practical design and evaluation of connections with different levels of geometry and complexity. Detailed modeling and verification examples with references to AISC and other relevant publications are included throughout the text, along with roughly 250 illustrations to aid in reader comprehension. Readers of this text will benefit from understanding at least the basics of structural design, ideally through civil, structural, or mechanical engineering programs of study. Written by a team of six highly qualified authors, Steel Connection Design by Inelastic Analysis includes information on: T-stub connections, single plate shear connections, bracket plate connections, beam over column connections, and end-plate moment connections Bolted wide flange splice connections, temporary splice connections, and chevron brace connection in a braced frame Brace connections at beam-column connection in a braced frame and double angle simple beam-to-column connections Semi-rigid beam-to-column connections, covering code design calculations and comparisons, IDEA StatiCa analysis, and ABAQUS analysis Steel Connection Design by Inelastic Analysis is an authoritative reference on the subject for structural engineers, Engineers of Record (EORs), fabrications specialists, and connection designers involved in the structural design of steel connections in the United States or any territory using AISC 360 as the primary design code.
Comprehensive resource on the finite element method in structural steel connection design through verification with AISC 360 provisions Steel Connection Design by Inelastic Analysis covers the use of the finite element method in structural steel connection design. Verification with AISC 360 provisions is presented, focusing on the Component-Based Finite Element Method (CBFEM), a novel approach that provides the global behavior and verification of resistance for the design of structural steel connections. This method is essential for fast and practical design and evaluation of connections with different levels of geometry and complexity. Detailed modeling and verification examples with references to AISC and other relevant publications are included throughout the text, along with roughly 250 illustrations to aid in reader comprehension. Readers of this text will benefit from understanding at least the basics of structural design, ideally through civil, structural, or mechanical engineering programs of study. Written by a team of six highly qualified authors, Steel Connection Design by Inelastic Analysis includes information on: T-stub connections, single plate shear connections, bracket plate connections, beam over column connections, and end-plate moment connections Bolted wide flange splice connections, temporary splice connections, and chevron brace connection in a braced frame Brace connections at beam-column connection in a braced frame and double angle simple beam-to-column connections Semi-rigid beam-to-column connections, covering code design calculations and comparisons, IDEA StatiCa analysis, and ABAQUS analysis Steel Connection Design by Inelastic Analysis is an authoritative reference on the subject for structural engineers, Engineers of Record (EORs), fabrications specialists, and connection designers involved in the structural design of steel connections in the United States or any territory using AISC 360 as the primary design code.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.