This book provides an overview of the Internet of Things Network and Machine Learning and introduces Internet of Things architecture. It designs a new intelligent IoT network architecture and introduces different machine learning approaches to investigate solutions. It discusses how machine learning can help network awareness and achieve network intelligent control. It also dicusses the emerging network techniques that can enable the development of intelligent IoT networks. This book applies several intelligent approaches for efficient resource scheduling in networks. It discusses Mobile Edge Computing aided intelligent IoT and focuses mainly on the resource sharing and edge computation offloading problems in mobile edge networks. The blockchain-based IoT (which allows fairly and securely renting resources and establishing contracts) is discussed as well. The Internet of Things refers to the billions of physical devices that are now connected to and transfer data through the Internet without requiring human-to-human or human-to-computer interaction. According to Gartner's prediction, there will be more than 37 billion IoT connections in the future year of 2025. However, with large-scale IoT deployments, IoT networks are facing challenges in the aspects of scalability, privacy, and security. The ever-increasing complexity of the IoT makes effective monitoring, overall control, optimization, and auditing of the network difficult. Recently, artificial intelligence (AI) and machine learning (ML) approaches have emerged as a viable solution to address this challenge. Machine learning can automatically learn and optimize strategy directly from experience without following pre-defined rules. Therefore, it is promising to apply machine learning in IoT network control and management to leverage powerful machine learning adaptive abilities for higher network performance. This book targets researchers working in the Internet of Things networks as well as graduate students and undergraduate students focused on this field. Industry managers, and government research agencies in the fields of the IoT networks will also want to purchase this book.
This book mainly discusses the most important issues in artificial intelligence-aided future networks, such as applying different ML approaches to investigate solutions to intelligently monitor, control and optimize networking. The authors focus on four scenarios of successfully applying machine learning in network space. It also discusses the main challenge of network traffic intelligent awareness and introduces several machine learning-based traffic awareness algorithms, such as traffic classification, anomaly traffic identification and traffic prediction. The authors introduce some ML approaches like reinforcement learning to deal with network control problem in this book. Traditional works on the control plane largely rely on a manual process in configuring forwarding, which cannot be employed for today's network conditions. To address this issue, several artificial intelligence approaches for self-learning control strategies are introduced. In addition, resource management problems are ubiquitous in the networking field, such as job scheduling, bitrate adaptation in video streaming and virtual machine placement in cloud computing. Compared with the traditional with-box approach, the authors present some ML methods to solve the complexity network resource allocation problems. Finally, semantic comprehension function is introduced to the network to understand the high-level business intent in this book. With Software-Defined Networking (SDN), Network Function Virtualization (NFV), 5th Generation Wireless Systems (5G) development, the global network is undergoing profound restructuring and transformation. However, with the improvement of the flexibility and scalability of the networks, as well as the ever-increasing complexity of networks, makes effective monitoring, overall control, and optimization of the network extremely difficult. Recently, adding intelligence to the control plane through AI&ML become a trend and a direction of network development This book's expected audience includes professors, researchers, scientists, practitioners, engineers, industry managers, and government research workers, who work in the fields of intelligent network. Advanced-level students studying computer science and electrical engineering will also find this book useful as a secondary textbook.
This book provides a chronological record of the development of Chinese thoughts on public finance over its 4,000 years of history, ranging from the Xia Dynasty to the founding of the People's Republic of China in 1949. It addresses the onset and evolution of Chinese thoughts on public finance across the different periods, such as thoughts on public finance during the Xia, Shang and Western Zhou dynasties, and thoughts from the early feudalistic period; offers an account about the thriving and declining of China's ancient thoughts on public finance; and deals with the emergence of capitalistic theories from the late Qing Dynasty to the founding of the People's Republic of China.
Semi-arid regions are ecological security barriers that prevent arid regions from expanding and turning into deserts. The expansion of arid regions and desertification seriously threaten ecological security, and human society cannot achieve sustainable development in an insecure ecological environment. As the transitional zone between arid and humid regions, semi-arid regions lay the foundation of ecological safety for the development of human society.This book provides an overview of processes and mechanisms that characterize semi-arid climate change both regionally and globally. It explains systematically theoretical concepts , including land-atmosphere interactions, ocean-atmosphere interactions, and factors that contribute to climate change, including the impact of human activities. A summary of recent progress in the research in the field and the future of semi-arid regions are also discussed.This book is a specialized monograph and textbook for graduate students of Earth sciences. It is also suitable for undergraduate or graduate students in related majors such as those engaged in atmospheric science, climate change studies, and Earth sciences.
This book presents statistics and data science methods for risk analytics in quantitative finance and insurance. Part I covers the background, financial models, and data analytical methods for market risk, credit risk, and operational risk in financial instruments, as well as models of risk premium and insolvency in insurance contracts. Part II provides an overview of machine learning (including supervised, unsupervised, and reinforcement learning), Monte Carlo simulation, and sequential analysis techniques for risk analytics. In Part III, the book offers a non-technical introduction to four key areas in financial technology: artificial intelligence, blockchain, cloud computing, and big data analytics. Key Features: Provides a comprehensive and in-depth overview of data science methods for financial and insurance risks. Unravels bandits, Markov decision processes, reinforcement learning, and their interconnections. Promotes sequential surveillance and predictive analytics for abrupt changes in risk factors. Introduces the ABCDs of FinTech: Artificial intelligence, blockchain, cloud computing, and big data analytics. Includes supplements and exercises to facilitate deeper comprehension.
This book is part of an initiative in cooperation with renowned Chinese publishers to make fundamental, formative, and influential Chinese thinkers available to a western readership, providing absorbing insights into Chinese reflections of late. Haipeng Zhang and Jinyi Zhai provide us with a history of China's struggle for national independence and prosperity, reflecting the “humiliation” in the “sinking” period and the “struggle” during the “rising” period. After the Japanese aggressions against China had caused more damage to China than all previous invasions, Chinese society not only avoided the continued "sinking", but also laid the foundation for China's modernization and the recent success story to the present day.
This new edition of this classic title, now in its seventh edition, presents a balanced and comprehensive introduction to the theory, implementation, and practice of time series analysis. The book covers a wide range of topics, including ARIMA models, forecasting methods, spectral analysis, linear systems, state-space models, the Kalman filters, nonlinear models, volatility models, and multivariate models. It also presents many examples and implementations of time series models and methods to reflect advances in the field. Highlights of the seventh edition: A new chapter on univariate volatility models A revised chapter on linear time series models A new section on multivariate volatility models A new section on regime switching models Many new worked examples, with R code integrated into the text The book can be used as a textbook for an undergraduate or a graduate level time series course in statistics. The book does not assume many prerequisites in probability and statistics, so it is also intended for students and data analysts in engineering, economics, and finance.
This book mainly discusses the most important issues in artificial intelligence-aided future networks, such as applying different ML approaches to investigate solutions to intelligently monitor, control and optimize networking. The authors focus on four scenarios of successfully applying machine learning in network space. It also discusses the main challenge of network traffic intelligent awareness and introduces several machine learning-based traffic awareness algorithms, such as traffic classification, anomaly traffic identification and traffic prediction. The authors introduce some ML approaches like reinforcement learning to deal with network control problem in this book. Traditional works on the control plane largely rely on a manual process in configuring forwarding, which cannot be employed for today's network conditions. To address this issue, several artificial intelligence approaches for self-learning control strategies are introduced. In addition, resource management problems are ubiquitous in the networking field, such as job scheduling, bitrate adaptation in video streaming and virtual machine placement in cloud computing. Compared with the traditional with-box approach, the authors present some ML methods to solve the complexity network resource allocation problems. Finally, semantic comprehension function is introduced to the network to understand the high-level business intent in this book. With Software-Defined Networking (SDN), Network Function Virtualization (NFV), 5th Generation Wireless Systems (5G) development, the global network is undergoing profound restructuring and transformation. However, with the improvement of the flexibility and scalability of the networks, as well as the ever-increasing complexity of networks, makes effective monitoring, overall control, and optimization of the network extremely difficult. Recently, adding intelligence to the control plane through AI&ML become a trend and a direction of network development This book's expected audience includes professors, researchers, scientists, practitioners, engineers, industry managers, and government research workers, who work in the fields of intelligent network. Advanced-level students studying computer science and electrical engineering will also find this book useful as a secondary textbook.
This book provides an overview of the Internet of Things Network and Machine Learning and introduces Internet of Things architecture. It designs a new intelligent IoT network architecture and introduces different machine learning approaches to investigate solutions. It discusses how machine learning can help network awareness and achieve network intelligent control. It also dicusses the emerging network techniques that can enable the development of intelligent IoT networks. This book applies several intelligent approaches for efficient resource scheduling in networks. It discusses Mobile Edge Computing aided intelligent IoT and focuses mainly on the resource sharing and edge computation offloading problems in mobile edge networks. The blockchain-based IoT (which allows fairly and securely renting resources and establishing contracts) is discussed as well. The Internet of Things refers to the billions of physical devices that are now connected to and transfer data through the Internet without requiring human-to-human or human-to-computer interaction. According to Gartner's prediction, there will be more than 37 billion IoT connections in the future year of 2025. However, with large-scale IoT deployments, IoT networks are facing challenges in the aspects of scalability, privacy, and security. The ever-increasing complexity of the IoT makes effective monitoring, overall control, optimization, and auditing of the network difficult. Recently, artificial intelligence (AI) and machine learning (ML) approaches have emerged as a viable solution to address this challenge. Machine learning can automatically learn and optimize strategy directly from experience without following pre-defined rules. Therefore, it is promising to apply machine learning in IoT network control and management to leverage powerful machine learning adaptive abilities for higher network performance. This book targets researchers working in the Internet of Things networks as well as graduate students and undergraduate students focused on this field. Industry managers, and government research agencies in the fields of the IoT networks will also want to purchase this book.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.