A fully comprehensive examination of state-of-the-art technologies for measurement at the small scale • Highlights the advanced research work from industry and academia in micro-nano devices test technology • Written at both introductory and advanced levels, provides the fundamentals and theories • Focuses on the measurement techniques for characterizing MEMS/NEMS devices
Filling a gap in the literature, this is the first book to focus on the fabrication of functional porous materials by using ice templating and freeze drying. Comprehensive in its scope, the volume covers such techniques as the fabrication of porous polymers, porous ceramics, biomimic strong composites, carbon nanostructured materials, nanomedicine, porous nanostructures by freeze drying of colloidal or nanoparticle suspensions, and porous materials by combining ice templating and other techniques. In addition, applications for each type of material are also discussed. Of great benefit to those working in the freeze-drying field and researchers in porous materials, materials chemistry, engineering, and the use of such materials for various applications, both in academia and industry.
A fully comprehensive examination of state-of-the-art technologies for measurement at the small scale • Highlights the advanced research work from industry and academia in micro-nano devices test technology • Written at both introductory and advanced levels, provides the fundamentals and theories • Focuses on the measurement techniques for characterizing MEMS/NEMS devices
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.