The authors of this book, all with a background in condensed matter physics, have carried out advanced researches in recent years to study the optical and magneto-optical properties of many kinds of new functional materials, including metal-based metamaterials, narrow-to-wide-bandgap semiconductors, thin films, and magnetic and magneto-optical materials by using different types of optical methods and instruments. This book describes some of the more recent progresses and developments in the study of condensed matter optics in both theoretic and experimental fields. It will help readers, especially graduate students and scientists who are studying and working in the nano-photonic field, to understand more deeply the characteristics of light waves propagated in nano-structure-based materials with potential applications in the future.
Driven by the ever-increasing amount of mobile data, cellular networks evolve from small cell network to ultra-dense heterogeneous networks, to provide high system capacity and spectrum efficiency. By bringing base stations (BSs) to the approximate spatial scale and number magnitude, ultra-dense heterogeneous networks would definitely bring unprecedented paradigm changes to the network design. Firstly, along with densification of small cells, inter-cell interference becomes severe and may deteriorate performance of mobile users. Assigning network resources including bandwidth and time slots, while avoiding interference, desires serious consideration. Secondly, the coverage area of BSs becomes small and irregular, resulting in much frequent and complicated handovers when mobile users move around. How to ensure continuous communication and implement effective mobility management, and inter-cell resource allocation and cooperation, remains a challenging issue. Thirdly, such dynamic change in spatial dimension enables us to re-investigate available and ongoing communications and networking techniques, such as massive MIMO, CoMP, millimeter waves (mmWaves), carrier aggregation, full duplex radio, and D2D communications. To address the aforementioned challenging research issues, this book will investigate the service and QoE provisioning in ultra-dense heterogeneous networks. In particular, firstly we introduce ultra-dense heterogeneous networks by careful definition regarding spatial deployment, generic characteristics, and requirements of ultra-dense heterogeneous networks in order to ensure QoE of mobile users. Secondly, we depict the resource management among small cells in close proximity, mobility management for mobile users (address the super-frequent handovers), and interference management (dealing with the interference due to frequency-reuse in the vicinity). Thirdly, we study the enabling factors, and the integration of ultra-dense heterogeneous networks with enabling technologies, such as massive-MIMO, cloud-RAN, mmWaves, D2D, IoT. Finally, we conclude the book and indicate future directions and challenges.
This volume mainly summarizes the invited talks presented at the 5th Asia-Pacific Workshop on Quantum Information Science (APWQIS) in conjunction with a Festschrift in honor of Professor Vladimir Korepin's 60th birthday. In this Festschrift, we have assembled a medley of interesting articles from some of his friends, well-wishers and collaborators. Comprising both reviews of the state-of-the-art and the latest results, this book covers various aspects of quantum information science, including topics like quantum discord, quantum computing, quantum entanglement, etc.
As the latest generation of cellular mobile communication technology, 5G is characterized by high speed, low delay, wide bandwidth and high reliability. Compared with 4G, the peak rate of 5G has increased by at less 30 times over, the user experience rate by 10 times, the spectrum efficiency by 3 times, the connection density by 10 times, and the wireless interface delay has been reduced by 90%. With the application of 5G technology, not only will the mobile communication and Internet industry be changed dramatically, but so will the medical field.This book focuses on the integration of 5G with medicine, including the advantages of smart medicine in comparison with traditional medicine, how 5G promotes the development of smart medicine, and the integration of 5G smart medical terminals with new medical applications. Readers will gain insight into the great potentials brought by new technologies in the medical world and also the benefits of better healthcare services brought by advances in the 5G technology.
The book covers various thermoplastic composites, including continuous and discontinuous fiber thermoplastic composites. It describes processing methods and explains the effect of different processing parameters on the structure and performance of thermoplastic composites. Characterization and mechanics of the composite are also discussed in the book.
The book covers various thermoplastic composites, including continuous and discontinuous fiber thermoplastic composites. It describes processing methods and explains the effect of different processing parameters on the structure and performance of thermoplastic composites. Characterization and mechanics of the composite are also discussed in the book.
The authors of this book, all with a background in condensed matter physics, have carried out advanced researches in recent years to study the optical and magneto-optical properties of many kinds of new functional materials, including metal-based metamaterials, narrow-to-wide-bandgap semiconductors, thin films, and magnetic and magneto-optical materials by using different types of optical methods and instruments. This book describes some of the more recent progresses and developments in the study of condensed matter optics in both theoretic and experimental fields. It will help readers, especially graduate students and scientists who are studying and working in the nano-photonic field, to understand more deeply the characteristics of light waves propagated in nano-structure-based materials with potential applications in the future.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.