This book explains in detail how to perform perturbation expansions in quantum field theory to high orders, and how to extract the critical properties of the theory from the resulting divergent power series. These properties are calculated for various second-order phase transitions of three-dimensional systems with high accuracy, in particular the critical exponents observable in experiments close to the phase transition.Beginning with an introduction to critical phenomena, this book develops the functional-integral description of quantum field theories, their perturbation expansions, and a method for finding recursively all Feynman diagrams to any order in the coupling strength. Algebraic computer programs are supplied on accompanying World Wide Web pages. The diagrams correspond to integrals in momentum space. They are evaluated in 4-î dimensions, where they possess pole terms in 1/î. The pole terms are collected into renormalization constants.The theory of the renormalization group is used to find the critical scaling laws. They contain critical exponents which are obtained from the renormalization constants in the form of power series. These are divergent, due to factorially growing expansion coefficients. The evaluation requires resummation procedures, which are performed in two ways: (1) using traditional methods based on Pad and Borel transformations, combined with analytic mappings; (2) using modern variational perturbation theory, where the results follow from a simple strong-coupling formula. As a crucial test of the accuracy of the methods, the critical exponent à governing the divergence of the specific heat of superfluid helium is shown to agree very well with the extremely precise experimental number found in the space shuttle orbiting the earth (whose data are displayed on the cover of the book).The phi4-theories investigated in this book contain any number N of fields in an O(N)-symmetric interaction, or in an interaction in which O(N)-symmetry is broken by a term of a cubic symmetry. The crossover behavior between the different symmetries is investigated. In addition, alternative ways of obtaining critical exponents of phi4-theories are sketched, such as variational perturbation expansions in three rather than 4-î dimensions, and improved ratio tests in high-temperature expansions of lattice models.
This is an introductory book dealing with collective phenomena in many-body systems. A gas of bosons or fermions can show oscillations of various types of density. These are described by different combinations of field variables. Especially delicate is the competition of these variables. In superfluid 3He, for example, the atoms can be attracted to each other by molecular forces, whereas they are repelled from each other at short distance due to a hardcore repulsion. The attraction gives rise to Cooper pairs, and the repulsion is overcome by paramagnon oscillations. The combination is what finally led to the discovery of superfluidity in 3He. In general, the competition between various channels can most efficiently be studied by means of a classical version of the Hubbard-Stratonovich transformation.A gas of electrons is controlled by the interplay of plasma oscillations and pair formation. In a system of rod- or disc-like molecules, liquid crystals are observed with directional orientations that behave in unusual five-fold or seven-fold symmetry patterns. The existence of such a symmetry was postulated in 1975 by the author and K Maki. An aluminium material of this type was later manufactured by Dan Shechtman which won him the 2014 Nobel prize. The last chapter presents some solvable models, one of which was the first to illustrate the existence of broken supersymmetry in nuclei.
This book lays the foundations of the theory of fluctuating multivalued fields with numerous applications. Most prominent among these are phenomena dominated by the statistical mechanics of line-like objects, such as the phase transitions in superfluids and superconductors as well as the melting process of crystals, and the electromagnetic potential as a multivalued field that can produce a condensate of magnetic monopoles. In addition, multivalued mappings play a crucial role in deriving the physical laws of matter coupled to gauge fields and gravity with torsion from the laws of free matter. Through careful analysis of each of these applications, the book thus provides students and researchers with supplementary reading material for graduate courses on phase transitions, quantum field theory, gravitational physics, and differential geometry.
This is the third, significantly expanded edition of the comprehensive textbook published in 1990 on the theory and applications of path integrals. It is the first book to explicitly solve path integrals of a wide variety of nontrivial quantum-mechanical systems, in particular the hydrogen atom. The solutions have become possible by two major advances. The first is a new euclidean path integral formula which increases the restricted range of applicability of Feynman's famous formula to include singular attractive 1/r and 1/r2 potentials. The second is a simple quantum equivalence principle governing the transformation of euclidean path integrals to spaces with curvature and torsion, which leads to time-sliced path integrals that are manifestly invariant under coordinate transformations. In addition to the time-sliced definition, the author gives a perturbative definition of path integrals which makes them invariant under coordinate transformations. A consistent implementation of this property leads to an extension of the theory of generalized functions by defining uniquely integrals over products of distributions. The powerful Feynman -- Kleinert variational approach is explained and developed systematically into a variational perturbation theory which, in contrast to ordinary perturbation theory, produces convergent expansions. The convergence is uniform from weak to strong couplings, opening a way to precise approximate evaluations of analytically unsolvable path integrals. Tunneling processes are treated in detail. The results are used to determine the lifetime of supercurrents, the stability of metastable thermodynamic phases, and the large-order behavior of perturbationexpansions. A new variational treatment extends the range of validity of previous tunneling theories from large to small barriers. A corresponding extension of large-order perturbation theory also applies now to small orders. Special attention is devoted to path integrals with topological restrictions. These are relevant to the understanding of the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chem-Simons theory of particles with fractional statistics (anyohs) is introduced and applied to explain the fractional quantum Hall effect. The relevance of path integrals to financial markets is discussed, and improvements of the famous Black -- Scholes formula for option prices are given which account for the fact that large market fluctuations occur much more frequently than in the commonly used Gaussian distributions.
This is the fourth, expanded edition of the comprehensive textbook published in 1990 on the theory and applications of path integrals. It is the first book to explicitly solve path integrals of a wide variety of nontrivial quantum-mechanical systems, in particular the hydrogen atom. The solutions have become possible by two major advances. The first is a new euclidean path integral formula which increases the restricted range of applicability of Feynman's famous formula to include singular attractive 1/r and 1/r2 potentials. The second is a simple quantum equivalence principle governing the transformation of euclidean path integrals to spaces with curvature and torsion, which leads to time-sliced path integrals that are manifestly invariant under coordinate transformations.In addition to the time-sliced definition, the author gives a perturbative definition of path integrals which makes them invariant under coordinate transformations. A consistent implementation of this property leads to an extension of the theory of generalized functions by defining uniquely integrals over products of distributions.The powerful Feynman-Kleinert variational approach is explained and developed systematically into a variational perturbation theory which, in contrast to ordinary perturbation theory, produces convergent expansions. The convergence is uniform from weak to strong couplings, opening a way to precise approximate evaluations of analytically unsolvable path integrals.Tunneling processes are treated in detail. The results are used to determine the lifetime of supercurrents, the stability of metastable thermodynamic phases, and the large-order behavior of perturbation expansions. A new variational treatment extends the range of validity of previous tunneling theories from large to small barriers. A corresponding extension of large-order perturbation theory also applies now to small orders.Special attention is devoted to path integrals with topological restrictions. These are relevant to the understanding of the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chern-Simons theory of particles with fractional statistics (anyons) is introduced and applied to explain the fractional quantum Hall effect.The relevance of path integrals to financial markets is discussed, and improvements of the famous Black-Scholes formula for option prices are given which account for the fact that large market fluctuations occur much more frequently than in the commonly used Gaussian distributions.The author's other book on ‘Critical Properties of φ4 Theories’ gives a thorough introduction to the field of critical phenomena and develops new powerful resummation techniques for the extraction of physical results from the divergent perturbation expansions.
This is the fifth, expanded edition of the comprehensive textbook published in 1990 on the theory and applications of path integrals. It is the first book to explicitly solve path integrals of a wide variety of nontrivial quantum-mechanical systems, in particular the hydrogen atom. The solutions have been made possible by two major advances. The first is a new euclidean path integral formula which increases the restricted range of applicability of Feynman's time-sliced formula to include singular attractive 1/r- and 1/r2-potentials. The second is a new nonholonomic mapping principle carrying physical laws in flat spacetime to spacetimes with curvature and torsion, which leads to time-sliced path integrals that are manifestly invariant under coordinate transformations.In addition to the time-sliced definition, the author gives a perturbative, coordinate-independent definition of path integrals, which makes them invariant under coordinate transformations. A consistent implementation of this property leads to an extension of the theory of generalized functions by defining uniquely products of distributions.The powerful Feynman-Kleinert variational approach is explained and developed systematically into a variational perturbation theory which, in contrast to ordinary perturbation theory, produces convergent results. The convergence is uniform from weak to strong couplings, opening a way to precise evaluations of analytically unsolvable path integrals in the strong-coupling regime where they describe critical phenomena.Tunneling processes are treated in detail, with applications to the lifetimes of supercurrents, the stability of metastable thermodynamic phases, and the large-order behavior of perturbation expansions. A variational treatment extends the range of validity to small barriers. A corresponding extension of the large-order perturbation theory now also applies to small orders.Special attention is devoted to path integrals with topological restrictions needed to understand the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chern-Simons theory of particles with fractional statistics (anyons) is introduced and applied to explain the fractional quantum Hall effect.The relevance of path integrals to financial markets is discussed, and improvements of the famous Black-Scholes formula for option prices are developed which account for the fact, recently experienced in the world markets, that large fluctuations occur much more frequently than in Gaussian distributions.
This book explains in detail how to perform perturbation expansions in quantum field theory to high orders, and how to extract the critical properties of the theory from the resulting divergent power series. These properties are calculated for various second-order phase transitions of three-dimensional systems with high accuracy, in particular the critical exponents observable in experiments close to the phase transition.Beginning with an introduction to critical phenomena, this book develops the functional-integral description of quantum field theories, their perturbation expansions, and a method for finding recursively all Feynman diagrams to any order in the coupling strength. Algebraic computer programs are supplied on accompanying World Wide Web pages. The diagrams correspond to integrals in momentum space. They are evaluated in 4-î dimensions, where they possess pole terms in 1/î. The pole terms are collected into renormalization constants.The theory of the renormalization group is used to find the critical scaling laws. They contain critical exponents which are obtained from the renormalization constants in the form of power series. These are divergent, due to factorially growing expansion coefficients. The evaluation requires resummation procedures, which are performed in two ways: (1) using traditional methods based on Pad and Borel transformations, combined with analytic mappings; (2) using modern variational perturbation theory, where the results follow from a simple strong-coupling formula. As a crucial test of the accuracy of the methods, the critical exponent à governing the divergence of the specific heat of superfluid helium is shown to agree very well with the extremely precise experimental number found in the space shuttle orbiting the earth (whose data are displayed on the cover of the book).The phi4-theories investigated in this book contain any number N of fields in an O(N)-symmetric interaction, or in an interaction in which O(N)-symmetry is broken by a term of a cubic symmetry. The crossover behavior between the different symmetries is investigated. In addition, alternative ways of obtaining critical exponents of phi4-theories are sketched, such as variational perturbation expansions in three rather than 4-î dimensions, and improved ratio tests in high-temperature expansions of lattice models.
This is an introductory book dealing with collective phenomena in many-body systems. A gas of bosons or fermions can show oscillations of various types of density. These are described by different combinations of field variables. Especially delicate is the competition of these variables. In superfluid 3He, for example, the atoms can be attracted to each other by molecular forces, whereas they are repelled from each other at short distance due to a hardcore repulsion. The attraction gives rise to Cooper pairs, and the repulsion is overcome by paramagnon oscillations. The combination is what finally led to the discovery of superfluidity in 3He. In general, the competition between various channels can most efficiently be studied by means of a classical version of the Hubbard-Stratonovich transformation.A gas of electrons is controlled by the interplay of plasma oscillations and pair formation. In a system of rod- or disc-like molecules, liquid crystals are observed with directional orientations that behave in unusual five-fold or seven-fold symmetry patterns. The existence of such a symmetry was postulated in 1975 by the author and K Maki. An aluminium material of this type was later manufactured by Dan Shechtman which won him the 2014 Nobel prize. The last chapter presents some solvable models, one of which was the first to illustrate the existence of broken supersymmetry in nuclei.
This book lays the foundations of the theory of fluctuating multivalued fields with numerous applications. Most prominent among these are phenomena dominated by the statistical mechanics of line-like objects, such as the phase transitions in superfluids and superconductors as well as the melting process of crystals, and the electromagnetic potential as a multivalued field that can produce a condensate of magnetic monopoles. In addition, multivalued mappings play a crucial role in deriving the physical laws of matter coupled to gauge fields and gravity with torsion from the laws of free matter. Through careful analysis of each of these applications, the book thus provides students and researchers with supplementary reading material for graduate courses on phase transitions, quantum field theory, gravitational physics, and differential geometry.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.