The Local Langlands Conjecture for GL(2) contributes an unprecedented text to the so-called Langlands theory. It is an ambitious research program of already 40 years and gives a complete and self-contained proof of the Langlands conjecture in the case n=2. It is aimed at graduate students and at researchers in related fields. It presupposes no special knowledge beyond the beginnings of the representation theory of finite groups and the structure theory of local fields.
Let F be a non-Archimedean local field. Let \mathcal{W}_{F} be the Weil group of F and \mathcal{P}_{F} the wild inertia subgroup of \mathcal{W}_{F}. Let \widehat {\mathcal{W}}_{F} be the set of equivalence classes of irreducible smooth representations of \mathcal{W}_{F}. Let \mathcal{A}^{0}_{n}(F) denote the set of equivalence classes of irreducible cuspidal representations of \mathrm{GL}_{n}(F) and set \widehat {\mathrm{GL}}_{F} = \bigcup _{n\ge 1} \mathcal{A}^{0}_{n}(F). If \sigma \in \widehat {\mathcal{W}}_{F}, let ^{L}{\sigma }\in \widehat {\mathrm{GL}}_{F} be the cuspidal representation matched with \sigma by the Langlands Correspondence. If \sigma is totally wildly ramified, in that its restriction to \mathcal{P}_{F} is irreducible, the authors treat ^{L}{\sigma} as known. From that starting point, the authors construct an explicit bijection \mathbb{N}:\widehat {\mathcal{W}}_{F} \to \widehat {\mathrm{GL}}_{F}, sending \sigma to ^{N}{\sigma}. The authors compare this "naïve correspondence" with the Langlands correspondence and so achieve an effective description of the latter, modulo the totally wildly ramified case. A key tool is a novel operation of "internal twisting" of a suitable representation \pi (of \mathcal{W}_{F} or \mathrm{GL}_{n}(F)) by tame characters of a tamely ramified field extension of F, canonically associated to \pi. The authors show this operation is preserved by the Langlands correspondence.
The Local Langlands Conjecture for GL(2) contributes an unprecedented text to the so-called Langlands theory. It is an ambitious research program of already 40 years and gives a complete and self-contained proof of the Langlands conjecture in the case n=2. It is aimed at graduate students and at researchers in related fields. It presupposes no special knowledge beyond the beginnings of the representation theory of finite groups and the structure theory of local fields.
Let F be a non-Archimedean local field. Let \mathcal{W}_{F} be the Weil group of F and \mathcal{P}_{F} the wild inertia subgroup of \mathcal{W}_{F}. Let \widehat {\mathcal{W}}_{F} be the set of equivalence classes of irreducible smooth representations of \mathcal{W}_{F}. Let \mathcal{A}^{0}_{n}(F) denote the set of equivalence classes of irreducible cuspidal representations of \mathrm{GL}_{n}(F) and set \widehat {\mathrm{GL}}_{F} = \bigcup _{n\ge 1} \mathcal{A}^{0}_{n}(F). If \sigma \in \widehat {\mathcal{W}}_{F}, let ^{L}{\sigma }\in \widehat {\mathrm{GL}}_{F} be the cuspidal representation matched with \sigma by the Langlands Correspondence. If \sigma is totally wildly ramified, in that its restriction to \mathcal{P}_{F} is irreducible, the authors treat ^{L}{\sigma} as known. From that starting point, the authors construct an explicit bijection \mathbb{N}:\widehat {\mathcal{W}}_{F} \to \widehat {\mathrm{GL}}_{F}, sending \sigma to ^{N}{\sigma}. The authors compare this "naïve correspondence" with the Langlands correspondence and so achieve an effective description of the latter, modulo the totally wildly ramified case. A key tool is a novel operation of "internal twisting" of a suitable representation \pi (of \mathcal{W}_{F} or \mathrm{GL}_{n}(F)) by tame characters of a tamely ramified field extension of F, canonically associated to \pi. The authors show this operation is preserved by the Langlands correspondence.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.