High Temperature Miniature Specimen Test Methods, for the first time in book format, focuses on a comprehensive and thorough introduction to a range of high temperature, miniaturized test methods at elevated temperatures which are used to obtain "bulk creep or fatigue properties from a small volume of material. Complicated mathematics and modelling are not involved. It is intended to be of use to a wide range of audience of engineers (e.g. designers, manufacturers, metallurgists, stress analysts), researchers (e.g. materials scientists) and students (undergraduate and postgraduate) in the field of high-temperature material and structural integrity assessment. Specific novel features of the book include 1] theoretical basis of each test method; 2], data interpretation method of each test method; and 3] specific application of each test method. - Provides the theoretical basis of each test method - Includes the data interpretation method of each test method - Presents specific applications and the limitations of each test method, along with opportunities for future developments
Statistical Shape and Deformation Analysis: Methods, Implementation and Applications contributes enormously to solving different problems in patient care and physical anthropology, ranging from improved automatic registration and segmentation in medical image computing to the study of genetics, evolution and comparative form in physical anthropology and biology. This book gives a clear description of the concepts, methods, algorithms and techniques developed over the last three decades that is followed by examples of their implementation using open source software. Applications of statistical shape and deformation analysis are given for a wide variety of fields, including biometry, anthropology, medical image analysis and clinical practice. - Presents an accessible introduction to the basic concepts, methods, algorithms and techniques in statistical shape and deformation analysis - Includes implementation examples using open source software - Covers real-life applications of statistical shape and deformation analysis methods
High Temperature Miniature Specimen Test Methods, for the first time in book format, focuses on a comprehensive and thorough introduction to a range of high temperature, miniaturized test methods at elevated temperatures which are used to obtain "bulk creep or fatigue properties from a small volume of material. Complicated mathematics and modelling are not involved. It is intended to be of use to a wide range of audience of engineers (e.g. designers, manufacturers, metallurgists, stress analysts), researchers (e.g. materials scientists) and students (undergraduate and postgraduate) in the field of high-temperature material and structural integrity assessment. Specific novel features of the book include 1] theoretical basis of each test method; 2], data interpretation method of each test method; and 3] specific application of each test method. - Provides the theoretical basis of each test method - Includes the data interpretation method of each test method - Presents specific applications and the limitations of each test method, along with opportunities for future developments
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.