Nonlinear Stochastic Control and Filtering with Engineering-oriented Complexities presents a series of control and filtering approaches for stochastic systems with traditional and emerging engineering-oriented complexities. The book begins with an overview of the relevant background, motivation, and research problems, and then: Discusses the robust stability and stabilization problems for a class of stochastic time-delay interval systems with nonlinear disturbances Investigates the robust stabilization and H∞ control problems for a class of stochastic time-delay uncertain systems with Markovian switching and nonlinear disturbances Explores the H∞ state estimator and H∞ output feedback controller design issues for stochastic time-delay systems with nonlinear disturbances, sensor nonlinearities, and Markovian jumping parameters Analyzes the H∞ performance for a general class of nonlinear stochastic systems with time delays, where the addressed systems are described by general stochastic functional differential equations Studies the filtering problem for a class of discrete-time stochastic nonlinear time-delay systems with missing measurement and stochastic disturbances Uses gain-scheduling techniques to tackle the probability-dependent control and filtering problems for time-varying nonlinear systems with incomplete information Evaluates the filtering problem for a class of discrete-time stochastic nonlinear networked control systems with multiple random communication delays and random packet losses Examines the filtering problem for a class of nonlinear genetic regulatory networks with state-dependent stochastic disturbances and state delays Considers the H∞ state estimation problem for a class of discrete-time complex networks with probabilistic missing measurements and randomly occurring coupling delays Addresses the H∞ synchronization control problem for a class of dynamical networks with randomly varying nonlinearities Nonlinear Stochastic Control and Filtering with Engineering-oriented Complexities describes novel methodologies that can be applied extensively in lab simulations, field experiments, and real-world engineering practices. Thus, this text provides a valuable reference for researchers and professionals in the signal processing and control engineering communities.
The book addresses the system performance with a focus on the network-enhanced complexities and developing the engineering-oriented design framework of controllers and filters with potential applications in system sciences, control engineering and signal processing areas. Therefore, it provides a unified treatment on the analysis and synthesis for discrete-time stochastic systems with guarantee of certain performances against network-enhanced complexities with applications in sensor networks and mobile robotics. Such a result will be of great importance in the development of novel control and filtering theories including industrial impact. Key Features Provides original methodologies and emerging concepts to deal with latest issues in the control and filtering with an emphasis on a variety of network-enhanced complexities Gives results of stochastic control and filtering distributed control and filtering, and security control of complex networked systems Captures the essence of performance analysis and synthesis for stochastic control and filtering Concepts and performance indexes proposed reflect the requirements of engineering practice Methodologies developed in this book include backward recursive Riccati difference equation approach and the discrete-time version of input-to-state stability in probability
As the volume of marine big data has increased dramatically, one of the main concerns is how to fully exploit the value of such data in the development of marine economy and marine science and technology.The book covers data acquisition, feature classification, processing and applications of marine big data in evaluation and decision-making, using case studies such as storm surge and marine oil spill disaster.
Index theory studies the solutions to differential equations on geometric spaces, their relation to the underlying geometry and topology, and applications to physics. If the space of solutions is infinite dimensional, it becomes necessary to generalise the classical Fredholm index using tools from the K-theory of operator algebras. This leads to higher index theory, a rapidly developing subject with connections to noncommutative geometry, large-scale geometry, manifold topology and geometry, and operator algebras. Aimed at geometers, topologists and operator algebraists, this book takes a friendly and concrete approach to this exciting theory, focusing on the main conjectures in the area and their applications outside of it. A well-balanced combination of detailed introductory material (with exercises), cutting-edge developments and references to the wider literature make this a valuable guide to this active area for graduate students and experts alike.
Solid chemisorption technology is an effective form of energy conversion for recovering low-grade thermal energy, but limited thermal conductivity and agglomeration phenomena greatly limit its performance. Over the past 20 years, researchers have explored the use of thermal conductive porous matrix to improve heat and mass transfer performance. Their efforts have yielded composite sorption technology, which is now extensively being used in refrigeration, heat pumps, energy storage, and de-NOx applications. This book reviews the latest technological advances regarding composite solid sorbents. Various development methods are introduced and compared, kinetic models are presented, and different cycles are analyzed. Given its scope, the book will benefit experts involved in developing novel materials and cycles for energy conversion, as well as engineers working to develop effective commercialized energy conversion systems based on solid sorption technology
This book provides an overview of crowdsourced data management. Covering all aspects including the workflow, algorithms and research potential, it particularly focuses on the latest techniques and recent advances. The authors identify three key aspects in determining the performance of crowdsourced data management: quality control, cost control and latency control. By surveying and synthesizing a wide spectrum of studies on crowdsourced data management, the book outlines important factors that need to be considered to improve crowdsourced data management. It also introduces a practical crowdsourced-database-system design and presents a number of crowdsourced operators. Self-contained and covering theory, algorithms, techniques and applications, it is a valuable reference resource for researchers and students new to crowdsourced data management with a basic knowledge of data structures and databases.
Nonlinear Stochastic Control and Filtering with Engineering-oriented Complexities presents a series of control and filtering approaches for stochastic systems with traditional and emerging engineering-oriented complexities. The book begins with an overview of the relevant background, motivation, and research problems, and then: Discusses the robust stability and stabilization problems for a class of stochastic time-delay interval systems with nonlinear disturbances Investigates the robust stabilization and H∞ control problems for a class of stochastic time-delay uncertain systems with Markovian switching and nonlinear disturbances Explores the H∞ state estimator and H∞ output feedback controller design issues for stochastic time-delay systems with nonlinear disturbances, sensor nonlinearities, and Markovian jumping parameters Analyzes the H∞ performance for a general class of nonlinear stochastic systems with time delays, where the addressed systems are described by general stochastic functional differential equations Studies the filtering problem for a class of discrete-time stochastic nonlinear time-delay systems with missing measurement and stochastic disturbances Uses gain-scheduling techniques to tackle the probability-dependent control and filtering problems for time-varying nonlinear systems with incomplete information Evaluates the filtering problem for a class of discrete-time stochastic nonlinear networked control systems with multiple random communication delays and random packet losses Examines the filtering problem for a class of nonlinear genetic regulatory networks with state-dependent stochastic disturbances and state delays Considers the H∞ state estimation problem for a class of discrete-time complex networks with probabilistic missing measurements and randomly occurring coupling delays Addresses the H∞ synchronization control problem for a class of dynamical networks with randomly varying nonlinearities Nonlinear Stochastic Control and Filtering with Engineering-oriented Complexities describes novel methodologies that can be applied extensively in lab simulations, field experiments, and real-world engineering practices. Thus, this text provides a valuable reference for researchers and professionals in the signal processing and control engineering communities.
The book addresses the system performance with a focus on the network-enhanced complexities and developing the engineering-oriented design framework of controllers and filters with potential applications in system sciences, control engineering and signal processing areas. Therefore, it provides a unified treatment on the analysis and synthesis for discrete-time stochastic systems with guarantee of certain performances against network-enhanced complexities with applications in sensor networks and mobile robotics. Such a result will be of great importance in the development of novel control and filtering theories including industrial impact. Key Features Provides original methodologies and emerging concepts to deal with latest issues in the control and filtering with an emphasis on a variety of network-enhanced complexities Gives results of stochastic control and filtering distributed control and filtering, and security control of complex networked systems Captures the essence of performance analysis and synthesis for stochastic control and filtering Concepts and performance indexes proposed reflect the requirements of engineering practice Methodologies developed in this book include backward recursive Riccati difference equation approach and the discrete-time version of input-to-state stability in probability
As the volume of marine big data has increased dramatically, one of the main concerns is how to fully exploit the value of such data in the development of marine economy and marine science and technology.The book covers data acquisition, feature classification, processing and applications of marine big data in evaluation and decision-making, using case studies such as storm surge and marine oil spill disaster.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.