This textbook is designed for an introductory course at undergraduate and graduate levels for bioengineering students. It provides a systematic way of examining bioengineering problems in a multidisciplinary computational approach. The book introduces basic concepts of multidiscipline-based computational modeling methods, provides detailed step-by-step techniques to build a model with consideration of underlying multiphysics, and discusses many important aspects of a modeling approach including results interpretation, validation, and assessment.
This textbook is designed for an introductory course at undergraduate and graduate levels for bioengineering students. It provides a systematic way of examining bioengineering problems in a multidisciplinary computational approach. The book introduces basic concepts of multidiscipline-based computational modeling methods, provides detailed step-by-step techniques to build a model with consideration of underlying multiphysics, and discusses many important aspects of a modeling approach including results interpretation, validation, and assessment.
This book introduces acoustic wave theories using a reader-friendly matrix-based linear algebra approach. It will enable the reader to take advantage of software tools such as MATLAB (commercial codes) and OCTAVE (open-source codes) to gain better and deeper understanding of the underlying physics quickly. In this aspect, this text can be regarded as a practical introduction of the acoustic wave theories in an easy-to-follow linear algebra format using matrix manipulations instead of an abstract approach relying on tensor manipulations. The book also uses case studies to demonstrate how the fundamentals on acoustic waves discussed throughout the book are applied in device designs and analyses such that the connections and interdependences between the underlying sciences and the observed behavior and performances can be better appreciated by the reader. To achieve this, all problems for illustrations, examples, case studies, and device analyses are developed and solved based on the mathematical foundations laid out in the book.
This book gives a comprehensive overview of electrochemical-based biosensors and their crucial components. Practical examples are given throughout the text to illustrate how the performance of electrochemical-based biosensors can be improved by nanoscale surface modification and how an optimal design can be achieved. All essential aspects of biosensors are considered, including electrode functionalization, efficiency of the mass transport of reactive species, and long term durability and functionality of the sensor. This book also: · Explains how the performance of an electrochemical-based biosensor can be improved by nanoscale surface modification · Gives readers the tools to evaluate and improve the performance of a biosensor with a multidisciplinary approach that considers electrical, electrostatic, electrochemical, chemical, and biochemical events · Links the performance of a sensor to the various governing physical and chemical principles so readers can fully understand how a biosensor with nanoscale modified electrode surface functions.
This textbook is designed for an introductory course at undergraduate and graduate levels for bioengineering students. It provides a systematic way of examining bioengineering problems in a multidisciplinary computational approach. The book introduces basic concepts of multidiscipline-based computational modeling methods, provides detailed step-by-step techniques to build a model with consideration of underlying multiphysics, and discusses many important aspects of a modeling approach including results interpretation, validation, and assessment.
This book gives a comprehensive overview of electrochemical-based biosensors and their crucial components. Practical examples are given throughout the text to illustrate how the performance of electrochemical-based biosensors can be improved by nanoscale surface modification and how an optimal design can be achieved. All essential aspects of biosensors are considered, including electrode functionalization, efficiency of the mass transport of reactive species, and long term durability and functionality of the sensor. This book also: · Explains how the performance of an electrochemical-based biosensor can be improved by nanoscale surface modification · Gives readers the tools to evaluate and improve the performance of a biosensor with a multidisciplinary approach that considers electrical, electrostatic, electrochemical, chemical, and biochemical events · Links the performance of a sensor to the various governing physical and chemical principles so readers can fully understand how a biosensor with nanoscale modified electrode surface functions.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.