This book is the first text to provide a comprehensive assessment of the application of fundamental principles of dissolution and drug release testing to poorly soluble compounds and formulations. Such drug products are, vis-à-vis their physical and chemical properties, inherently incompatible with aqueous dissolution. However, dissolution methods are required for product development and selection, as well as for the fulfillment of regulatory obligations with respect to biopharmaceutical assessment and product quality understanding. The percentage of poorly soluble drugs, defined in classes 2 and 4 of the Biopharmaceutics Classification System (BCS), has significantly increased in the modern pharmaceutical development pipeline. This book provides a thorough exposition of general method development strategies for such drugs, including instrumentation and media selection, the use of compendial and non-compendial techniques in product development, and phase-appropriate approaches to dissolution development. Emerging topics in the field of dissolution are also discussed, including biorelevant and biphasic dissolution, the use on enzymes in dissolution testing, dissolution of suspensions, and drug release of non-oral products. Of particular interest to the industrial pharmaceutical professional, a brief overview of the formulation and solubilization techniques employed in the development of BCS class 2 and 4 drugs to overcome solubility challenges is provided and is complemented by a collection of chapters that survey the approaches and considerations in developing dissolution methodologies for enabling drug delivery technologies, including nanosuspensions, lipid-based formulations, and stabilized amorphous drug formulations.
The State of the Art in High-Power Laser Technology Filled with full-color images, High-Power Laser Handbook offers comprehensive details on the latest advances in high-power laser development and applications. Performance parameters for each major class of lasers are described. The book covers high-power gas, chemical, and free-electron lasers and then discusses semiconductor diode lasers, along with the associated technologies of packaging, reliability, and beam shaping and delivery. Current research and development in solid-state lasers is described as well as scaling approaches for high CW powers, high pulse energies, and high peak powers. This authoritative work also addresses the emergence of fiber lasers and concludes by reviewing various methods for beam combining. Coverage Includes: Carbon dioxide lasers Excimer lasers Chemical lasers High-power free-electron lasers Semiconductor laser diodes High-power diode laser arrays Introduction to high-power solid-state lasers Zig-zag slab lasers ThinZag high-power laser development Thin disk lasers Heat capacity lasers Ultrafast solid-state lasers Ultrafast lasers in the thin disk geometry The National Ignition Facility laser Optical fiber lasers Pulsed fiber lasers High-power ultrafast fiber laser systems High-power fiber lasers for industry and defense Beam combining
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.