Inequalities for polynomials and their derivatives are very important in many areas of mathematics, as well as in other computational and applied sciences; in particular they play a fundamental role in approximation theory. Here, not only Extremal Problems and Inequalities of Markov-Bernstein Type for Algebraic Polynomials, but also ones for trigonometric polynomials and related functions, are treated in an integrated and comprehensive style in different metrics, both on general classes of polynomials and on important restrictive classes of polynomials. Primarily for graduate and PhD students, this book is useful for any researchers exploring problems which require derivative estimates. It is particularly useful for those studying inverse problems in approximation theory. - Applies Markov-Bernstein-type inequalities to any problem where derivative estimates are necessary - Presents complex math in a clean and simple way, progressing readers from polynomials into rational functions, and entire functions of exponential type - Contains exhaustive references with more than five hundred citations to articles and books - Features methods to solve inverse problems across approximation theory - Includes open problems for further research
Interpolation of functions is one of the basic part of Approximation Theory. There are many books on approximation theory, including interpolation methods that - peared in the last fty years, but a few of them are devoted only to interpolation processes. An example is the book of J. Szabados and P. Vértesi: Interpolation of Functions, published in 1990 by World Scienti c. Also, two books deal with a special interpolation problem, the so-called Birkhoff interpolation, written by G.G. Lorentz, K. Jetter, S.D. Riemenschneider (1983) and Y.G. Shi (2003). The classical books on interpolation address numerous negative results, i.e., - sultsondivergentinterpolationprocesses,usuallyconstructedoversomeequidistant system of nodes. The present book deals mainly with new results on convergent - terpolation processes in uniform norm, for algebraic and trigonometric polynomials, not yet published in other textbooks and monographs on approximation theory and numerical mathematics. Basic tools in this eld (orthogonal polynomials, moduli of smoothness,K-functionals, etc.), as well as some selected applications in numerical integration, integral equations, moment-preserving approximation and summation of slowly convergent series are also given. The rstchapterprovidesanaccountofbasicfactsonapproximationbyalgebraic and trigonometric polynomials introducing the most important concepts on appro- mation of functions. Especially, in Sect. 1.4 we give basic results on interpolation by algebraic polynomials, including representations and computation of interpolation polynomials, Lagrange operators, interpolation errors and uniform convergence in some important classes of functions, as well as an account on the Lebesgue function and some estimates for the Lebesgue constant.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.