There are several approaches to quantum gravity. The most well known approach is string theory (M-theory), followed by loop quantum gravity. Temporal topos (t-topos) is an application of a modified topos over a category with a Grothendieck topology. We give explicit formulations in terms of t-topos for characteristic microcosmic phenomena such as wave-particle duality, uncertainty principle, and quantum entanglement. In order to claim that t-topos theory is leading to quantum gravity with the same mathematical model, i.e., t-topos, we need to formulate also relativistic notions as a light cone, gravitational effect by mass, black hole, and big bang. The main devises of t-topos as a unifying theory of microcosm and macrocosm are the notions of a (micro) decomposition of a presheaf and a (micro) factorization of a morphism of a t-site. Before the chapter on t-topos, we provide the necessary mathematical background from categories, sheaves, cohomologies, and D-modules, which can be useful to study the connections to twister covering cohomology, abstract differential geometry, and p-adic string theory. About the author Goro C. Kato is a professor of mathematics at California Polytechnic State University, San Luis Obispo, C. A, and the author of research monographs in algebraic geometry (cohomological algebra & p-adic cohomology) The Heart of Cohomology, published by Springer, Kohomoloji No Kokoro (in Japanese), published by Iwanami-Shoten, and in algebraic analysis (D-modules) Fundamentals of Algebraic Microlocal Analysis, (coauthor: Daniele Struppa), published by Taylor-Francis. Goro C. Kato belongs to the Association of the Members of the Institute for Advanced Study, Princeton, N. J.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.