The book presents a clear understanding of a new type of computation system, the Cellular Neural Network (CNN), which has been successfully applied to the solution of many heavy computation problems, mainly in the fields of image processing and complex partial differential equations. The text describes how CNN will improve the soft-computation toolbox, and examines the many applications of soft computing to complex systems.
This book presents intelligent methods like neural, neuro-fuzzy, machine learning, deep learning and metaheuristic methods and their applications in both volcanology and seismology. The complex system of volcanoes and also earthquakes is a big challenge to identify their behavior using available models, which motivates scientists to apply non-model based methods. As there are lots of seismology and volcanology data sets, i.e., the local and global networks, one solution is using intelligent methods in which data-based algorithms are used.
This brief is a clear, concise description of the main techniques of time series analysis —stationary, autocorrelation, mutual information, fractal and multifractal analysis, chaos analysis, etc.— as they are applied to the influence of wind speed and solar radiation on the production of electrical energy from these renewable sources. The problem of implementing prediction models is addressed by using the embedding-phase-space approach: a powerful technique for the modeling of complex systems. Readers are also guided in applying the main machine learning techniques for classification of the patterns hidden in their time series and so will be able to perform statistical analyses that are not possible by using conventional techniques. The conceptual exposition avoids unnecessary mathematical details and focuses on concrete examples in order to ensure a better understanding of the proposed techniques. Results are well-illustrated by figures and tables.
Based on the successful Modelling and Control of Robot Manipulators by Sciavicco and Siciliano (Springer, 2000), Robotics provides the basic know-how on the foundations of robotics: modelling, planning and control. It has been expanded to include coverage of mobile robots, visual control and motion planning. A variety of problems is raised throughout, and the proper tools to find engineering-oriented solutions are introduced and explained. The text includes coverage of fundamental topics like kinematics, and trajectory planning and related technological aspects including actuators and sensors. To impart practical skill, examples and case studies are carefully worked out and interwoven through the text, with frequent resort to simulation. In addition, end-of-chapter exercises are proposed, and the book is accompanied by an electronic solutions manual containing the MATLAB® code for computer problems; this is available free of charge to those adopting this volume as a textbook for courses.
This book presents intelligent methods like neural, neuro-fuzzy, machine learning, deep learning and metaheuristic methods and their applications in both volcanology and seismology. The complex system of volcanoes and also earthquakes is a big challenge to identify their behavior using available models, which motivates scientists to apply non-model based methods. As there are lots of seismology and volcanology data sets, i.e., the local and global networks, one solution is using intelligent methods in which data-based algorithms are used.
This brief is a clear, concise description of the main techniques of time series analysis —stationary, autocorrelation, mutual information, fractal and multifractal analysis, chaos analysis, etc.— as they are applied to the influence of wind speed and solar radiation on the production of electrical energy from these renewable sources. The problem of implementing prediction models is addressed by using the embedding-phase-space approach: a powerful technique for the modeling of complex systems. Readers are also guided in applying the main machine learning techniques for classification of the patterns hidden in their time series and so will be able to perform statistical analyses that are not possible by using conventional techniques. The conceptual exposition avoids unnecessary mathematical details and focuses on concrete examples in order to ensure a better understanding of the proposed techniques. Results are well-illustrated by figures and tables.
The book presents a clear understanding of a new type of computation system, the Cellular Neural Network (CNN), which has been successfully applied to the solution of many heavy computation problems, mainly in the fields of image processing and complex partial differential equations. The text describes how CNN will improve the soft-computation toolbox, and examines the many applications of soft computing to complex systems.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.