Undoubtedly, the Navier-Stokes equations are of basic importance within the context of modern theory of partial differential equations. Although the range of their applicability to concrete problems has now been clearly recognised to be limited, as my dear friend and bright colleague K.R. Ra jagopal has showed me by several examples during the past six years, the mathematical questions that remain open are of such a fascinating and challenging nature that analysts and applied mathematicians cannot help being attracted by them and trying to contribute to their resolution. Thus, it is not a coincidence that over the past ten years more than seventy sig nificant research papers have appeared concerning the well-posedness of boundary and initial-boundary value problems. In this monograph I shall perform a systematic and up-to-date investiga tion of the fundamental properties of the Navier-Stokes equations, including existence, uniqueness, and regularity of solutions and, whenever the region of flow is unbounded, of their spatial asymptotic behavior. I shall omit other relevant topics like boundary layer theory, stability, bifurcation, de tailed analysis of the behavior for large times, and free-boundary problems, which are to be considered "advanced" ones. In this sense the present work should be regarded as "introductory" to the matter.
This book surveys research results on the physical and mathematical modeling, as well as the numerical simulation of complex fluid and structural mechanical processes occurring in the human blood circulation system. Topics treated include continuum mechanical description; choice of suitable liquid and wall models; mathematical analysis of coupled models; numerical methods for flow simulation; parameter identification and model calibration; fluid-solid interaction; mathematical analysis of piping systems; particle transport in channels and pipes; artificial boundary conditions, and many more. The book was developed from lectures presented by the authors at the Oberwolfach Research Institute (MFO), in Oberwolfach-Walke, Germany, November, 2005.
This volume brings together five contributions to mathematical fluid mechanics, a classical but still very active research field which overlaps with physics and engineering. The contributions cover not only the classical Navier-Stokes equations for an incompressible Newtonian fluid, but also generalized Newtonian fluids, fluids interacting with particles and with solids, and stochastic models. The questions addressed in the lectures range from the basic problems of existence of weak and more regular solutions, the local regularity theory and analysis of potential singularities, qualitative and quantitative results about the behavior in special cases, asymptotic behavior, statistical properties and ergodicity.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.